
From Capabilities to Regions: Enabling Efficient
Compilation of Lexical Effect Handlers
Marius Müller
University of Tübingen, Germany

Philipp Schuster
University of Tübingen, Germany

Jonathan Lindegaard Starup
Aarhus University, Denmark

Klaus Ostermann
University of Tübingen, Germany

Jonathan Immanuel Brachthäuser
University of Tübingen, Germany

Abstract
Effect handlers are a high-level abstraction that enables programmers to use effects in a structured
way. They have gained a lot of popularity within academia and subsequently also in industry.
However, the abstraction often comes with a significant runtime cost and there has been intensive
research recently on how to reduce this price.

A promising approach in this regard is to implement effect handlers using a CPS translation
and to provide sufficient information about the nesting of handlers. With this information the CPS
translation can decide how effects have to be lifted through handlers, i.e., which handlers need
to be skipped, in order to handle the effect at the correct place. A structured way to make this
information available is to use a calculus with a region system and explicit subregion evidence. Such
calculi, however, are quite verbose, which makes them impractical to use as a source-level language.

We present a method to infer the lifting information for a calculus underlying a source-level
language. This calculus uses second-class capabilities for the safe use of effects. To do so, we define
a typed translation to a calculus with regions and evidence and we show that this lift-inference
translation is typability- and semantics-preserving. On the one hand, this exposes the precise relation
between the second-class property and the structure given by regions. On the other hand, it closes
a gap in a compiler pipeline enabling efficient compilation of the source-level language. We have
implemented lift inference in this compiler pipeline and conducted benchmarks which indicate that
the approach is indeed working.

Main Reference Marius Müller, Philipp Schuster, Jonathan Lindegaard Starup, Klaus Ostermann, and Jonathan
Immanuel Brachthäuser. 2023. From Capabilities to Regions: Enabling Efficient Compilation of
Lexical Effect Handlers. Proc. ACM Program. Lang. 7, OOPSLA2, Article 255 (October 2023),
29 pages. https://doi.org/10.1145/3622831

Comments This is an extended version of the main reference. Compared to the published paper, this report
contains the full appendix: detailed proof of typability preservation of the lift-inference translation,
proof sketch of semantics preservation of the lift-inference translation, formal definition of the
abstract machine for System Ξ/Λcap, full definition of the CPS translation, detailed proof of the
semantics preservation of the CPS translation and changes necessary for the proof of typability
preservation of the CPS translation relative to the original version.

1 Introduction

Languages with effect handlers [29, 30] offer a high-level way to structure effectful programs.
Effect handlers allow for a combination of various effects by giving meaning to abstract effect
operations (such as exceptions, async-await, generators, logic programming, or probabilistic
programming) in a composable way. In the past decade, effect handlers have been a hot
topic in programming language research and have also gained more and more popularity
outside academia. They have been implemented not only in research languages (such as
Eff [1], Koka [21], Frank [24], Effekt [4], or Helium [3]), but also practical general purpose

Marius Müller, Philipp Schuster, Jonathan Lindegaard Starup, Klaus Ostermann, and Jonathan Immanuel
Brachthäuser. “From Capabilities to Regions: Enabling Efficient Compilation of Lexical Effect Handlers”. Technical
Report. 2023. University of Tübingen, Germany.

2 From Capabilities to Regions: Enabling Efficient Compilation of Lexical Effect Handlers

languages such as OCaml [38], Scala2, Unison3, and WebAssembly1 are following lead and
have started to integrate effects and handlers. However, to make effect handlers practically
useful, it is critically important to minimize the runtime cost incurred by this abstraction.

Our goal, thus, is to have a source-level language with effect handlers that can be compiled
efficiently. Ideally, the language should be effect-safe and sufficiently expressive without
being unnecessarily complex. A recently developed way to strike this balance is using
lightweight effect polymorphism. Brachthäuser et al. [4] show how to design such a system
using second-class capabilities [28]. They develop the language Effekt which features lexical
effect handlers [4, 45, 3], a recent variant of effect handlers, and show how to translate it to
System Ξ, a calculus in explicit capability-passing style. The translation preserves typing
and is used to give the semantics for Effekt.

A recently developed way to efficiently implement lexical effect handlers uses iterated
continuation-passing style (CPS). It has been shown to yield good performance results
[35]. Moreover, Schuster et al. [36] have designed a core calculus Λcap, which features effect
handlers based on regions. They show how to translate Λcap to pure System F in a typability-
and semantics-preserving way.

Figure 1 summarizes the developments mentioned above. To reach our goal and complete
the pipeline, we have to close the gap in the middle: we have to show how to translate from
a system with second-class capabilities to a system with region-based effects, i.e., we have to
understand the relation between these two concepts precisely.

Effects

(Effekt)

Second-Class
Capabilities

(System Ξ)

Regions

(Λcap)

Answer-Type
Polymorphism

(System F)
capability
passing

[28]
[4]

lift
inference

[This Paper]

continuation
passing

[39]
[36]

Figure 1 Overview of this paper in relation to prior work. Nodes are labeled with mechanisms
to ensure effect safety (e.g., Effects); below each node one example calculus is listed. Each arrow
corresponds to a translation between calculi.

To do so, in this paper we present a typed translation from the calculus of second-class
capabilities System Ξ to the region-based calculus Λcap. The typed nature of the translation
makes the relation between the two concepts explicit. It connects the lexical scopes of the
definition sites of capabilities in System Ξ with corresponding regions in Λcap, in which the
capabilities are allowed to be used. This connection also materializes in the definition of sound
translation environments (see Definition 4), which are maintained during the translation as a
key component.

To practically evaluate our approach, we have implemented the translation as a compiler
phase in the Effekt language. As our implementation strategy is to translate effects and
handlers to CPS [14, 35, 36], we have also implemented the CPS translation of Schuster et al.
[36] with Standard ML [26] as the target language, hence completing a compiler pipeline for
Effekt. To further compile SML we use the MLton4 compiler.

2 https://github.com/lampepfl/dotty/pull/16739
3 https://www.unison-lang.org/learn/fundamentals/abilities
1 https://github.com/effect-handlers/wasm-spec
4 http://mlton.org

https://github.com/lampepfl/dotty/pull/16739
https://www.unison-lang.org/learn/fundamentals/abilities
https://github.com/effect-handlers/wasm-spec
http://mlton.org

Müller, Schuster, Starup, Ostermann, and Brachthäuser 3

For a certain restricted class of programs Schuster et al. [35] prove that all abstractions
related to effects and handlers can theoretically be eliminated. Moreover, they demonstrate
excellent performance on a number of benchmarks which have independently been reproduced
by Karachalias et al. [18]. However, for their performance evaluation, they wrote programs
directly in a core language λcap. We, for the first time, can reproduce the performance claims
of Schuster et al. [35] in a realistic source-level language.

Comparing our implementation with other state-of-the-art implementations of effect
handlers, we found that our relative performance ranges from 2.1x slowdown to 44.4x
speedup compared with OCaml [38], 1.1x slowdown to 87.8x speedup compared with Koka
[21, 44], and 1.2x slowdown to 23.3x speedup compared with Eff [31, 18]. The results
indicate that the compilation technique presented by Schuster et al. [35] works for a high-level
language presented by Brachthäuser et al. [4] and yields good performance.

By closing the conceptual gap between lexical scoping and regions, we enable efficient
compilation of lexical effect handlers, like those found in Effekt or Helium. However, our
results do not immediately carry over to dynamic effect handlers, as implemented in OCaml
5, Koka, and WebAssembly and we leave further investigation of this to future work.

Our contributions are the following.

We formally present a typability- and semantics-preserving translation from System Ξ to
Λcap. We refer to this as lift-inference translation for reasons to be explained shortly.
From a theoretical perspective, we hence clarify the precise relation between scope-based
reasoning for second-class capabilities and region-based reasoning.
From a practical perspective, we fill in an important missing link in the compiler pipeline
illustrated in Figure 1.
In Λcap, continuation calls have to be scoped [44]. No such restriction exists for System Ξ.
To support System Ξ, we lift the scoped-continuation restriction imposed by Schuster
et al. [36] and thus generalize Λcap. We prove that the generalized system still allows for
a translation to iterated CPS satisfying the same properties as the original.
We have implemented the lift-inference translation and the CPS translation as steps for
the efficient compilation of the source-level language Effekt to SML. In addition, we have
performed benchmarks indicating that our approach is competitive with or often faster
than other state-of-the-art languages featuring effect handlers.

Next, in Section 2, we introduce the main ideas of the lift-inference translation by considering
examples. In Section 3, we first recap the two calculi involved and then formally present
the lift-inference translation. A discussion of the implementation and the corresponding
benchmarks is given in Section 4. In Section 5, we compare to related work. We conclude
and outline future work in Section 6.

2 Main Ideas

In this section we introduce the main ideas for our lift-inference translation from the source
calculus System Ξ [4] to the target calculus Λcap [36]. Both calculi are mostly standard
functional languages with multi-arity functions, but additionally feature lexical effect handlers
[4, 45, 3]. Effect handlers are called lexical if effect operation calls are lexically related to the
corresponding effect handler. This is in contrast to the more traditional dynamically scoped
handlers, which search the stack for the closest handler at runtime. Both calculi establish
this lexical connection between effect and handler by using explicit capability-passing style

TR 2023

4 From Capabilities to Regions: Enabling Efficient Compilation of Lexical Effect Handlers

try { (yield1) ⇒
def g(i : Int) { do yield1(i) };
val x = g(1);
try { (yield2) ⇒

g(x)
} with { (j, k) ⇒ 42 }

} with { (j, k) ⇒ do k(j + 1) }

(a) Program in System Ξ. Effect
safety is established by treating capa-
bilities as second-class values.

try { [r1; n1 : r1 ⊑ ⊤](yield1) ⇒
def g[r; n : r ⊑ r1](i : Int) at r { do yield1[n](i) };
val x = g[r1; 0](1);
try { [r2; n2 : r2 ⊑ r1](yield2) ⇒

g[r2; n2](x)
} with { (j, k) ⇒ 42 }

} with { (j, k) ⇒ do k[0](j + 1) }

(b) Program in Λcap. Effect safety is established
by tracking the region of a capability and requiring
subregion evidence.

Figure 2 Simple example illustrating lexical effect handling.

[4, 45]. This means that effects are bound as capabilities by their handlers and can then be
used in the scope of the handled statement.

Both languages are effect safe, that is, they guarantee that all effect operations are
eventually handled. In System Ξ, this is achieved by making functions and capabilities
second-class [28] so that they cannot be returned or stored in data structures, hence making
sure that capabilities cannot leave their defining scope. To make this explicit, these second-
class functions and capabilities are called blocks. While blocks in System Ξ are required to
be second-class, they still can be higher-order, i.e., functions can abstract block parameters.

In Λcap, there is no such second-class restriction on functions and capabilities. To ensure
effect safety, Λcap features a region system with subregioning and explicit subregion evidence
instead. Here, a region denotes the scope of an effect handler and subregion evidence is used
to constructively witness how handlers are nested. By enforcing that capabilities can only
be called in a subregion of their corresponding handler, this system also ensures that they
cannot leave their defining scope.

Since evidence terms precisely witness how handlers are nested, they contain the informa-
tion of where capabilities have to be lifted to when they are called, i.e., how many handlers
have to be jumped over until the correct handler is found. This enables efficient compilation
of effects and handlers [36, 35]: the lifting can often be promoted to compile time which
avoids the search for the correct handler at runtime. The goal of our lift-inference translation
is thus to infer this lifting information by endowing terms in System Ξ with correct regions
and evidence to obtain valid terms in Λcap.

2.1 Basic Example
To illustrate the need for lifting, as well as how to perform lift inference, consider the following
example in Effekt:

effect Yield(i: Int): Int
try {

def g(i: Int): Int / {} = { do Yield(i) };
val x = g(1);
try { g(x) } with Yield { j ⇒ 42 }

} with Yield { j ⇒ resume(j + 1) }

We define a local function g, which uses the Yield effect to return an integer. It is annotated
to have type Int and no observable effects {}. This means the (dynamic) call site of g cannot
handle the Yield effect and it needs to be handled at the (lexical) definition site of g. In

Müller, Schuster, Starup, Ostermann, and Brachthäuser 5

consequence, running the example will result in the integer 3.

Subfigure 2 (a) shows the result of the type-and-effect directed translation [4] from Effekt
(with support for effect inference) to System Ξ in explicit capability-passing style. Comparing
the System Ξ term to the original program, we notice that handlers explicitly bind capabilities
(e.g., yield1) and effect calls now directly refer to a capability (e.g., do yield1(i)). Capability
passing in System Ξ also makes explicit that the effect call in the body of g refers to the
outer handler.

At runtime, we need to make sure to handle the effect operation with the correct handler.
Thus, when g is called the second time, we have to lift the capability in its body through
the inner handler, that is, we need to skip over the inner handler to transfer control flow to
the outer handler. Our goal is to make this skipping of handlers explicit. Then, our CPS
translation can make use of this information to avoid searching for the correct handler at
runtime, as it knows how many segments of the stack it has to capture.

One possibility, to make this information explicit, would be to use lifting annotations
[35, 2]. The definition of g (for the second call) would then become

def g(i : Int) { do (lift yield1)(i) };

But this is only correct when g is called under the inner handler. When it is called the first
time, immediately after its definition, this annotation is incorrect since no handler has to be
skipped. It is hence not clear what lifting annnotation should be used when defining g. The
lifting information at the definition-site should be correct for any call-site.

A very structured and sufficiently expressive way to deal with this situation is to use
regions and subregion evidence instead. They allow us encode the lifting information and
also give us the ability to abstract over it at the definition-site. This can be seen in Subfigure
2 (b), which shows what the example looks like in Λcap. Each handler now not only binds a
capability, but also a fresh region (e.g., r1) and subregion evidence (e.g., n1 : r1 ⊑ ⊤)
witnessing that the fresh region is a subregion of the current one (e.g., the toplevel region ⊤).
The basic idea now is to abstract the required lifting information in the form of an evidence
parameter n for g, which is then provided to the call of the capability yield1 in the function
body. Capability yield1 is bound at the outer handler in region r1, so its evidence should
witness that the region in which yield1 is called is a subregion of r1 and which subregion it is.
To express this, we also abstract over a region parameter r for g, which stands for the region
at its call-site as is visible in the annotation at r. The evidence parameter n is thus typed
as r ⊑ r1, expressing that the call-site region r must be a subregion of g’s (and yield1’s)
definition region r1.

When calling g under the inner handler, the current region is the region r2 bound at
this handler, so we instantiate g’s region parameter with r2. The evidence passed to g thus
must have type r2 ⊑ r1. This subregion relation is witnessed by evidence n2 bound at
the inner handler. But now we can also call g immediately after defining it, in which case
we instantiate its region parameter with r1. For the evidence we then use the trivial one,
0 : r1 ⊑ r1, stating that subregioning is reflexive. In in either case, the evidence passed
to yield1 correctly witnesses how the capability must be lifted.

To see how this lifting works, consider the CPS translation of the above program:

TR 2023

6 From Capabilities to Regions: Enabling Efficient Compilation of Lexical Effect Handlers

Reset(
(Λr1. λn1. λyield1.

λkg. (λk. k (Λr. λn. λi. n Int (yield1 i)))
(λg. (λk1. (g r1 (Λa. λm. m) 1)

(λx. Reset(
(Λr2. λn2. λyield2. g r2 n2 x)
(Cps r1 Int)
Lift
(λj. λk. λk0. k0 42)

)
k1))

kg))
(Cps Void Int)
Lift
(λj. λk. (Λa. λm. m) Int (λk0. k (j + 1) k0))

)

Here we can see that the evidence parameters n1, n2 bound at the handlers are eventually
instantiated with the function Lift which has the effect of capturing a further delimited
continuation. The delimiters for continuations are given by the meta function Reset which
is wrapped around each handler upon translation and has the effect of applying its argument
to an empty continuation. For the definition of Lift and Reset we refer to Subsection 3.3.
The trivial evidence 0 just becomes the (polymorphic) identity function, Λa. λm. m.

The function g is translated to

Λr. λn. λi. n Int (yield1 i)

In the function body we can see that the application of the capability is translated to an
application of the evidence parameter n to this capability. When looking at the call sites
we can then see how the lifting happens concretely. At the outer call site, n is instatiated
with the identity function so that no lifting happens. At the inner call site (under the second
Reset), n is instantiated with n2, i.e., with Lift, so that here the delimited continuation
which is captured does not end at the inner Reset but at the outer one.

To sum up this subsection, after lift inference each function-block definition should
abstract a fresh region standing for the region in which the function will run, and an evidence
parameter witnessing that this call-site region is a subregion of the function’s definition-site
region.

2.2 Higher-Order Functions

The example in the previous subsection only uses first-order functions. However, System Ξ
also supports higher-order functions which make lift inference a bit more complicated. To
see why, consider the following variation of the example from the previous subsection:

def call { f: Int ⇒ Int / {} } =
val x = f(1);
try { f(x) }
with Yield { j ⇒ 42 }

try {
call { (i: Int) ⇒ do Yield(i) }

} with Yield { j ⇒ resume(j + 1) }

As in the previous example, the effect operation is called under two handlers and the result
of running it is the same. This time however, the inner handler is installed by a higher-order
function call. This example motivates, why lexical effect handling can be desirable: as
programmers, we want to reason locally about the relation of the call to do Yield and its

Müller, Schuster, Starup, Ostermann, and Brachthäuser 7

def call(f : Int → Int) {
val x = f(1);
try { (yield2) ⇒ f(x) }
with { (j, k) ⇒ 42 }

};

try { (yield1) ⇒
call { (i : Int) ⇒ do yield1(i) }

} with { (j, k) ⇒ do k(j + 1) }

(a) Program in System Ξ.

def call[rc, rf; nc : rc ⊑ ⊤, nf : rc ⊑ rf](
f : ∀[r; r ⊑ rf](Int) →r Int

) at rc {
val x = f[rc; nf](1);
try { [r2; n2 : r2 ⊑ rc](yield2) ⇒ f[r2; n2 ⊕ nf](x) }
with { (j, k) ⇒ 42 }

};

try { [r1; n1 : r1 ⊑ ⊤](yield1) ⇒
call[r1, r1; n1, 0] { [rg; ng](i : Int) at rg ⇒ do yield1[ng](i) }

} with { (j, k) ⇒ do k[0](j + 1) }

(b) Program in Λcap.

Figure 3 Example with higher-order function.

lexically enclosing handler, without having to be aware of call’s implementation details.
Subfigure 3 (a) shows the program in System Ξ. Again, the capability-passing translation

makes the lexical relation of the effect call and the outer handler explicit.
The translation to Λcap in Subfigure 3 (b) is now slightly more involved. Handlers are

endowed with regions and evidence as before. The block passed to call is the same as g in
the previous example, it is just anonymous now. Its translation thus is the same as for g, it
abstracts a fresh region rg and evidence ng : rg ⊑ r1 which it then passes to the capability
in its body.

As the anonymous block is called indirectly via the parameter f of function call, we have
to pass an appropriate region and evidence to f in the body of call. Since this region and
evidence should be correct for any block f is instantiated with, we abstract over them in the
definition of call. This way, we can provide them at the call-site of call when we know the
concrete block argument we pass for f.

Therefore, call now abstracts two regions and two evidence parameters. Region rc again
stands for the region where call will run later and evidence nc again witnesses that rc is a
subregion of call’s definition region5. The second region rf represents the definition region of
the block argument passed for f. The second evidence nf witnesses that rc is a subregion of
rf. Moreover, in the type of f we can see that, as any other function block, f abstracts a fresh
region r and corresponding evidence witnessing that r is a subregion of rf. When f is called
the first time in the body of call, immediately at the beginning, the current region is rc, so
we instantiate the region parameter of f with this region. The evidence for f hence has to
witness the subregion relation rc ⊑ rf which is precisely what the evidence nf specifically
abstracted for f does. When f is called the second time under the second handler, the current
region is not rc anymore but the region r2 abstracted at that handler, so we instantiate the
region parameter of f with r2. To obtain the correct evidence for f we thus have to compose
the evidence nf with evidence witnessing that r2 ⊑ rc. This relation is precisely witnessed
by the evidence n2 abstracted at the handler. The evidence passed to the second call of f
thus is the composition n2 ⊕ nf. In the CPS translation this composition of evidence becomes
function composition, so that multiple Lift functions can be combined to obtain the overall

5 For call, this is the toplevel region ⊤ of which any region is a subregion, so nc is not really necessary in
this case.

TR 2023

8 From Capabilities to Regions: Enabling Efficient Compilation of Lexical Effect Handlers

lift if necessary.
In the application of call, we have to provide appropriate regions and evidence. The

first region argument is again the current region, which is now r1, and the first evidence
is n1, because call was defined outside of the handler. The second region parameter must
be instantiated with the definition-site region of the block argument, which is again r1, as
the anonymous block is defined in place. The second evidence hence has to witness that
r1 ⊑ r1, so we have to pass the trivial evidence 0. Note that in call this evidence is then
passed to the calls of the block argument and eventually to yield1, where for the second call
it is composed with n2 beforehand. Hence, yield1 indeed receives the correct evidence in
both cases since composing with the trivial evidence eventually has no effect. In the CPS
translation it is just composition with the identity function.

In general, after lift inference each function block should abstract an additional region and
evidence parameter for each of its block parameters. The region stands for the definition-site
region of the block argument and the evidence witnesses that the region in which the whole
function block is called must be a subregion of the region for the block parameter.

2.3 Summary
Summing up, the guiding principle of our lift-inference translation is that each call-site region
of a block is a subregion of its definition-site region. This is facilitated by the second-class
property of blocks in System Ξ. Every function block thus abstracts a fresh region in which
it will run later and evidence witnessing the above principle. When a block is called, its
region parameter is instantiated with the current region and its evidence parameter with
appropriate evidence. Hence, we have to track the current region during the translation and
we have to remember the regions in which the blocks have been defined. We also have to
keep track of the correct evidence for each block.

Moreover, for each block parameter of a function an additional region and evidence
parameter is abstracted. The region represents the definition-site of the instantiation of the
block parameter and the evidence witnesses that the whole function is called in a subregion
of that definition-site region. As the block parameter cannot be returned, this ensures that
its instantiation again satisfies our guiding principle.

3 Technical Development

In this section, we formally present how the lift-inference translation from our version of
System Ξ to our version of Λcap proceeds. This translation infers correct regions and evidence
for a well-typed term in System Ξ to yield a well-typed term in Λcap. Before doing so, we
recap both languages and detail the changes we have made relative to the original versions
of the languages to overcome technical difficulties.

3.1 Syntax and Type Systems
We first describe the syntax and type systems of the two calculi. In the following, source
calculus means System Ξ, not to be confused with the source-level language Effekt it underlies.

3.1.1 Source Calculus System Ξ
We start with the source calculus System Ξ, a calculus with lexical effect handlers in explicit
capability-passing style with second-class functions.

Müller, Schuster, Starup, Ostermann, and Brachthäuser 9

Syntax of Terms:

Statements
s ::= val x = s; s sequencing

| return v returning values
| def f = b; s defining blocks
| b(v, b) calling blocks
| do b(v) performing capabilities
| try { (c) ⇒ s } with { (x, k) ⇒ s } handling effects

Values
v ::= x variables

| () | 0 | 1 | ... | true | ... constants

Blocks
b ::= f , k, c | w

Block Values
w ::= { (x : τ , f : σ) ⇒ s }

Syntax of Types:

Value Types
τ ::= Unit | Int | Bool | ...

Block Types
σ ::= (τ , σ) → τ functions

| Cap τ τ capabilities

Environments:
Value Environment
Γ ::= ∅ | Γ, x : τ

Block Environment
∆ ::= ∅ | ∆, f : σ

Names:

Value Variables x, y ∈ x, y Block Variables f , g, k, c ∈ f, g, k, Fail, Choice, ...

Figure 4 Syntax of System Ξ.

Syntax The syntax of System Ξ is given in Figure 4. The calculus syntactically distinguishes
potentially effectful statements from terms that cannot have control effects, i.e., it is in
fine-grain call-by-value [22]. Non-effectful terms are further divided into values and blocks.
Values are either variables or constants, blocks are either variables or anonymous multi-arity
functions. It is important to note that only values can be returned but blocks cannot, that
is, blocks are second class. Still, blocks can be higher-order, i.e., they cannot only abstract
value parameters but also block parameters.

Statements can be sequenced using val x = s1; s2 where the result of s1 is bound to
variable x in s2. Defining a local block is done with def f = b; s making block b available
in the scope of statement s by binding it to variable f . We distinguish calls of a function
block from calling capabilities standing for effect operations. For the latter we add the
construct do b(v) and also reflect this on the type level by adding an additional block type
for capabilities. Syntactically distinguishing capabilities is a minor technical difference to the
original version of System Ξ, but it simplifies the presentation of the lift-inference translation

TR 2023

10 From Capabilities to Regions: Enabling Efficient Compilation of Lexical Effect Handlers

Value Typing Γ
↑

⊢ v
↑

: τ
↓

Γ(x) = τ

Γ ⊢ x : τ
[Var] Γ ⊢ 3 : Int

[Lit]

Block Typing Γ
↑

∆
↑

⊢ b
↑

: σ
↓

∆(f) = σ

Γ ∆ ⊢ f : σ
[BlockVar]

Γ, x : τ ∆, f : σ ⊢ s0 : τ0

Γ ∆ ⊢ { (x : τ , f : σ) ⇒ s0 } : (τ , σ) → τ0
[Block]

Statement Typing Γ
↑

∆
↑

⊢ s
↑

: τ
↓

Γ ∆ ⊢ s0 : τ0 Γ, x : τ0 ∆ ⊢ s : τ

Γ ∆ ⊢ val x = s0; s : τ
[Val]

Γ ⊢ v : τ

Γ ∆ ⊢ return v : τ
[Ret]

Γ ∆ ⊢ b : σ Γ ∆, f : σ ⊢ s : τ

Γ ∆ ⊢ def f = b; s : τ
[Def]

Γ ∆ ⊢ b0 : (τ , σ) → τ0 Γ ⊢ v : τ Γ ∆ ⊢ b : σ

Γ ∆ ⊢ b0(v, b) : τ0
[App]

Γ ∆ ⊢ b : Cap τ1 τ2 Γ ⊢ v : τ1

Γ ∆ ⊢ do b(v) : τ2
[Do]

Γ ∆, c : Cap τ1 τ2 ⊢ s0 : τ Γ, x : τ1 ∆, k : Cap τ2 τ ⊢ s : τ

Γ ∆ ⊢ try { (c) ⇒ s0 } with { (x, k) ⇒ s } : τ
[Try]

Figure 5 Type system of System Ξ.

which treats capabilities and function blocks differently. Capabilities cannot have block
parameters as this would allow blocks to leave their defining scopes and therefore break the
second-class property. Finally, handling effects is done in explicit capability-passing style. In
try { (c) ⇒ s0 } with { (x, k) ⇒ s } the capability is bound to c in the scope of the handled
statement s0. The implementation of the capability binds its value parameter x and the
continuation k in the implementation statement s.

Typing rules Figure 5 defines the typing rules for System Ξ. Typing for values is entirely
standard. Note that values as well as statements are typed against value types. In contrast,
blocks are typed against block types, that is, they have either function type or capability
type. Moreover, there are two kinds of environments in the typing judgment of blocks,
namely Γ for value bindings and ∆ for block bindings. The same is true for statement typing.
In particular, when typing a function block, the value parameters are added to the value
environment and the block parameters are added to the block environment.

Apart from distinguishing two kinds of environment, the rules for sequencing (Val),
returning (Ret), block definition (Def) and function block calls (App) are standard. Com-
pared to the original version of System Ξ we have an additional rule (Do) for performing
capabilities, a consequence of syntactically distinguishing them from function blocks as
mentioned above. A capability has type Cap τ1 τ2 where τ1 is the type of its parameter and
τ2 is the return type. Otherwise the rule is essentially the same as the one for calling function

Müller, Schuster, Starup, Ostermann, and Brachthäuser 11

blocks. The crucial rule is Try. The handler makes the capability available in the scope of
the handled statement by adding a binding for it to the block environment for the handled
statement. Since blocks cannot be returned, the capability can only be used in that scope,
thus guaranteeing effect safety without any visible effect system. In the implementation
statement, the continuation parameter has capability type. This is in contrast with the
original version of System Ξ where it has function type. The reason for treating continuations
as capabilities is to simplify the translation to our generalized version of Λcap. For System Ξ
this does not add expressivity as capabilities can be used in the same contexts as function
blocks.

3.1.2 Target Calculus Λcap

The target calculus Λcap also is a calculus with lexical effect handlers in explicit capability-
passing style. In contrast to System Ξ, it features first-class functions and has explicit regions
and subregion evidence.

Syntax The syntax is given in Figure 6. It is again in fine-grain call-by-value, but does
not distinguish blocks from values. So blocks are now values, making them first class. This
is also reflected on the level of types in that function and capability types are not in a
separate syntactic category. But, to ensure effect safety, there are regions and subregion
evidence. Regions are either region variables or the toplevel region. Evidence is a witness
of the subregion relationship between regions. It is either an evidence variable, the trivial
evidence 0, or the composition e ⊕ e of evidence.

Functions do not distinguish value and block parameters but can now additionally abstract
over a list of regions and a list of evidence. Accordingly, when calling a function, corresponding
lists of regions and evidence have to be supplied. Furthermore, each function is annotated
with the region it is supposed to run in. When calling a capability, it needs to be supplied
with evidence but not with a region. An effect handler not only abstracts a capability
but additionally a region and an evidence variable for the handled statement, whereas the
implementation statement stays the same as in System Ξ. The constructs for sequencing and
return are also the same. There is no construct for the definition of a local function, as it
can be easily defined as syntactic sugar using sequencing now that functions are first class.

Typing rules Figure 7 shows the typing rules for Λcap. In contrast to System Ξ, there is only
one typing environment, however, in addition to value bindings it can also contain regions
and evidence bindings. Moreover, the typing judgment for statements has as an additional
component the region in which the statement is typed.

As functions can abstract region and evidence parameters, these are added to the
environment when typing the function body (rule Fun). Moreover, the function has to run
in the region its body is typed in. This is also visible in the type of the function. When
sequencing two statements, both are typed in the same region as the compound statement.
Returning a result can be typed in any region. When applying a function (rule App), its
region arguments are substituted not only in the return type, but also in the types for the
evidence and value arguments when typing them. Furthermore, when substituted in the
region annotated in the function type, the resulting region has to coincide with the region
the applied function is typed in. This allows functions to be region-polymorphic.

Rule Do defines the typing for performing capabilities. A capability can only be called in
a subregion of the region annotated in its type. This is witnessed by the evidence supplied
in the call. The region annotated in the type of the capability c abstracted at the handled

TR 2023

12 From Capabilities to Regions: Enabling Efficient Compilation of Lexical Effect Handlers

Syntax of Terms:

Statements
s ::= val x = s; s sequencing

| return v returning values
| v[ρ ; e](v) calling functions
| do v[e](v) performing capabilities
| try { [r ; n](c) ⇒ s } with { (x, k) ⇒ s } handling effects

Values
v ::= x, f , k, c variables

| () | 0 | 1 | ... | true | ... constants
| { [r ; n : γ](x : τ) at ρ ⇒ s} closures

Evidence
e ::= n, ... evidence variables

| 0 reflexive evidence
| e ⊕ e transitive evidence

Syntax of Types:

Types
τ ::= Unit | Int | Bool | ... primitives

| ∀[r ; γ](τ) →ρ τ functions
| Cap ρ τ τ capabilities

Regions
ρ ::= r region variable

| ⊤ toplevel region

Constraints
γ ::= ρ ⊑ ρ subregion

Environments:
Γ ::= ∅ empty environment

| Γ, r region binding
| Γ, n : γ evidence binding
| Γ, x : τ value binding

Names:
Variables x, y, f , g, k, c ∈ x, y, f, g, k Fail, Choice, ...

Syntactic Sugar:

def f = v .= val f = return v

Figure 6 Syntax of Λcap.

statement s0 of an effect handler (rule Try) is the fresh region r also abstracted there.
Region r is also the region which s0 is typed in. Thus, c can only be called in a subregion of
r , i.e., within the handled statement. This ensures effect safety. The additionally abstracted
evidence n witnesses that r is a subregion of the region ρ the overall statement is typed in.
The regions and subregion evidence hence precisely reflect how handlers are nested. The
implementation statement is typed in the outer region ρ which is also the region for the
continuation. In constrast to the original version of Λcap, the continuation has capability
type, not function type. This allows to call the continuation not only in region ρ but also in

Müller, Schuster, Starup, Ostermann, and Brachthäuser 13

Value Typing Γ
↑

⊢ v
↑

: τ
↓

Γ(x) = τ

Γ ⊢ x : τ
[Var] Γ ⊢ 3 : Int

[Lit]

Γ, r , n : γ, x : τ ρ ⊢ s0 : τ0

Γ ⊢ { [r ; n : γ](x : τ) at ρ ⇒ s0 } : ∀[r ; γ](τ) →ρ τ0
[Fun]

Statement Typing Γ
↑

ρ
↑

⊢ s
↑

: τ
↓

Γ ρ ⊢ s0 : τ0 Γ, x0 : τ0 ρ ⊢ s : τ

Γ ρ ⊢ val x0 = s0; s : τ
[Val]

Γ ⊢ v : τ

Γ ρ ⊢ return v : τ
[Ret]

Γ ⊢ v0 : ∀[r ; γ](τ) →ρ0 τ0 Γ ⊢ e : γ[r 7→ ρ] Γ ⊢ v : τ [r 7→ ρ] ρ′
0 = ρ0[r 7→ ρ]

Γ ρ′
0 ⊢ v0[ρ ; e](v) : τ0[r 7→ ρ]

[App]

Γ ⊢ v0 : Cap ρ′ τ1 τ2 Γ ⊢ e : ρ ⊑ ρ′ Γ ⊢ v : τ1

Γ ρ ⊢ do v0[e](v) : τ2
[Do]

Γ, r , n : r ⊑ ρ, c : Cap r τ1 τ2 r ⊢ s0 : τ Γ, x : τ1, k : Cap ρ τ2 τ ρ ⊢ s : τ

Γ ρ ⊢ try { [r ; n](c) ⇒ s0 } with { (x, k) ⇒ s } : τ
[Try]

Evidence Typing Γ
↑

⊢ e
↑

: γ
↓

Γ(n) = ρ1 ⊑ ρ2

Γ ⊢ n : ρ1 ⊑ ρ2
[EviVar] Γ ⊢ 0 : ρ ⊑ ρ

[Reflexive]

Γ ⊢ e1 : ρ ⊑ ρ′ Γ ⊢ e2 : ρ′ ⊑ ρ′′

Γ ⊢ e1 ⊕ e2 : ρ ⊑ ρ′′ [Transitive]

Figure 7 Type system of Λcap.

any subregion of ρ. Our version is thus more expressive as continuations can, for example,
be called under further effect handlers, i.e., we lift the restriction of scoped continuations
imposed by the original version. This is important in order to fully support a lift-inference
translation from System Ξ since there no such restriction for continuations exists.

The typing of evidence is rather straightforward. Evidence variables are looked up in
the environment. The trivial evidence 0 witnesses that any region is a subregion of itself.
Composition of evidence shows that subregioning is transitive.

3.2 Operational Semantics
We define the operational semantics of the two calculi in terms of an abstract machine. The
abstract machine for Λcap is essentially the same as the one for System Ξ. There are only two
minor differences. First, there is no stepping rule for the definition of local functions in Λcap
as there is no separate construct for them. Second, there are regions and evidence. However,
the latter are irrelevant for the machine semantics as it proceeds by searching delimiters with
labels on the meta stack and does not use region and evidence information.

TR 2023

14 From Capabilities to Regions: Enabling Efficient Compilation of Lexical Effect Handlers

As the operational semantics of both languages is so similar, it is not that interesting
with regards to lift inference. Nevertheless, knowing the operational semantics helps to
understand lifting, in particular with respect to continuations. Therefore, we briefly sketch
how the machine works, and also where it differs from the original versions of the two calculi.
A detailed discussion is given in Appendix B.1.

A machine state ⟨ s ∥ K ⟩ contains a statement s to be evaluated and a runtime meta
stack K which is a list of delimited stacks. A stack is a list of frames ending with a delimiter
#l containing a label l. This is a minor technical difference to the original version of the
machine which treats delimiters as regular frames and does not explicitly segment the meta
stack into delimited stacks. It facilitates the correctness proof of the CPS translation from
our generalized version of Λcap to System F.

The machine implements multi-prompt delimited control [9]. Upon execution of a handler
statement, a fresh label is generated and a new stack consisting only of a delimiter with that
label is pushed onto the meta stack.

(try) ⟨ try { (c) ⇒ s0 } with { (x, k) ⇒ s } ∥ K ⟩ → ⟨ s0[c 7→ v] ∥ #l :: K ⟩
where l = generateFresh() and v = capl { (x, k) ⇒ s }

Execution then continues with the handled statement where the abstracted capability variable
is replaced by a runtime capability which contains the just generated label l and the handler
implementation. When encountering a call to a capability the machine transitions to
unwinding mode and pops stacks off the meta stack until the correct label is found. These
stacks are collected in a resumption which is used as continuation.

It is exactly this runtime search of correct handlers that we seek to avoid by using lifting
information. To make this possible, we make sure that the evidence passed to capabilities
precisely reflects the labels on the runtime meta stack and we take care that this invariant is
preserved during the execution of the machine. In fact, at runtime each evidence becomes a
list of appropriate labels which is adapted as the machine proceeds. The invariant ensures
that evidence always contains the correct lifting information. While being irrelevant for the
machine semantics, this is critically important for the CPS translation, since the latter uses
evidence instead of labels (see Subsection 3.3).

The main difference to the original version of the machine is how a call of a continuation
proceeds. The reason we have to treat this differently is that, compared to the original version
of Λcap, we allow the use of continuations under further handlers, in order to fully support
System Ξ in the lift-inference translation. A continuation may contain capabilities which
have been provided with evidence. When calling the continuation under further handlers
in the implementation statement, additional delimiters are installed on the meta stack that
were not present when the continuation was created. Thus, the evidence for the capabilities
inside the continuation does not precisely reflect the labels on the meta stack which violates
the critical invariant described above.

To make the evidence correct again, we have to make the additional delimiters “invisible”
for the continuation. This is achieved by treating continuations as capabilities as well.
This way, when a continuation is called, it first captures the additional stacks with these
delimiters by unwinding as described above (which is again reflected by the evidence passed
to the continuation itself), and packages them into one resumption frame. Only then, the
continuation is executed in the usual way by rewinding. Such a resumption frame acts a bit
like an “underflow” frame [10] when returning to it, in the sense that execution then first
continues with that resumption. When unwinding, however, it is treated just as another
ordinary frame so that the stacks inside of it do not inferfere with the unwinding. Hence,

Müller, Schuster, Starup, Ostermann, and Brachthäuser 15

Translation of Statements:
...

SJ do v0[e](v) K = EJ e K T J τ2 K (VJ v0 K VJ v K)
SJ do k[e](v) K = EJ e K T J τ2 K (λk0. VJ k K VJ v K k0)
SJ try { [r ; n](c) ⇒ s0 } with { (x, k) ⇒ s } K = Reset ((Λr . λn. λc. SJ s0 K)

(Cps T J ρ K T J τ K) (Lift) (λx. λk. SJ s K))

Auxiliary Definitions:

Cps R A= (A → R) → R

Reset : Cps (Cps R A) A → Cps R A
Reset m= m (λx. λk. k x)

Lift : ∀a. Cps R a → Cps (Cps R R′) a
Lift = Λa. λm. λk. λj. m (λx. k x j)

Figure 8 CPS Translation from Λcap to System F.

when a call to a capability inside the continuation is encountered, it only sees the labels
present on the meta stack when the continuation was created so that its evidence is correct.

This difference in how continuations are treated compared to the original version does
not impact the final result of the execution for all programs that can be written in the
original versions of the calculi. It leads, however, to another minor difference to the original
machine. As the continuation capabilities are always delimited by the next label on the
meta stack at the point of their creation, execution of a closed statement s always starts
with a delimiter with a special toplevel label on the otherwise empty meta stack, that is, in
state ⟨ s ∥ #start :: • ⟩. This ensures that there also is a delimiting label for continuations of
try-statements in the toplevel region.

3.3 CPS Translation to System F
For the original version of Λcap Schuster et al. [36] give a typability- and semantics-preserving
CPS translation to pure System F. This CPS translation carries over almost unchanged to
our version of Λcap. Still, it is instructive to briefly repeat the core idea, in particular, to see
how evidence enables efficient compilation.

The idea of the CPS translation is to use evidence information to decide how to lift a
capability, i.e., which parts of the runtime meta stack need to be captured. Or put in terms
of the operational semantics, which delimiters have to be jumped over when unwinding. As
a result, no runtime search for the correct label on the meta stack is needed anymore. To
this end, the translation targets so-called iterated CPS [34], which uses one continuation
parameter for each stack delimited by a label.

The full CPS translation is given in Appendix B.2. Figure 8 only shows how handlers and
calls of capabilities are translated. Note that the translation is actually defined over typing
derivations, but we only write the term here. In the translation of a handler the handled
statement becomes a function applied to three arguments. The region parameter r represents
the polymorphic answer type that has to be instantiated appropriately (τ and ρ are the
overall type and region of the try-statement as in typing rule Try), the evidence variable n
is instantiated with the function Lift and the capability parameter c is instantiated with
the translated implementation statement. The whole term is then applied to an empty
continuation acting as a delimiter by meta function Reset. The function Lift increases the
number of continuation parameters of its argument m by one, hence m is lifted to a different
region by capturing one more delimited stack. Note that the explicitly abstracted type

TR 2023

16 From Capabilities to Regions: Enabling Efficient Compilation of Lexical Effect Handlers

parameter a is the immediate return type (see also the application of a capability below),
while the (answer) types R, R′ are determined by the surrounding regions.

In the CPS translation of performing capabilities the capability is applied to its argument.
The resulting term is then fed into the translated evidence of the capability (in the type
argument T J τ2 K, τ2 is the return type of the capability as in typing rule Do). This evidence
always eventually consists of a composition of evidence variables bound at handlers6, which
means that it is a composition of Lift-terms. Thus, the translated evidence term determines
how far the capability is lifted, that is, how many stacks of the meta stack are captured.

As explained above we also treat the continuation as a capability and provide it with
evidence. This ensures that the handler capabilities inside the continuation are correctly
lifted since the continuation itself is lifted to the correct region. The CPS translation for
continuation capabilities is almost the same as for handler capabilities, the only difference
being that the applied continuation is η-expanded. This is necessary in order to make the
following simulation theorem true.

▶ Theorem 1 (Simulation for the CPS Translation).
If ⊢ M ok and M → M′, then MJ M K →∗ MJ M′ K.

M denotes a machine state. The operational semantics of Λcap hence corresponds to reduction
in System F. As a corollary we obtain that evaluation is preserved by the CPS translation.

▶ Corollary 2 (Evaluation for the CPS Translation).
If ∅ ⊤⊢ s : Int and ⟨ s ∥ #start :: • ⟩ →∗ ⟨ return v ∥ • ⟩,
then Reset(SJ s K) done →∗ done VJ v K.

Here done is a special toplevel continuation and the Reset is necessary due to the presence
of the toplevel label. As the operational semantics of our version of Λcap differs a bit from
the original version, the proof of the simulation theorem and the necessary translation of
the runtime constructs had to be adapted. This is shown in Appendix B.3. In contrast, the
proof of the following typability preservation stays almost unchanged.

▶ Theorem 3 (Typability Preservation for the CPS Translation).
If Γ ρ ⊢ s : τ , then T J Γ K ⊢ SJ s K : Cps T J ρ K T J τ K.
If Γ ⊢ v : τ , then T J Γ K ⊢ VJ v K : T J τ K.

3.4 Lift-Inference Translation
We now present the lift-inference translation from System Ξ to Λcap. This is our main
contribution. The translation is defined over typing derivations of System Ξ and is supposed
to take well-typed terms in System Ξ to well-typed terms in Λcap, so we translate types
and terms. In the clauses for the terms we only write the term instead of the whole typing
derivation.

The translation is defined in Figure 9. As the two calculi are quite similar, the translation
mainly proceeds by endowing terms in System Ξ with appropriate region and evidence ab-
stractions and applications in the right places. To this end, we maintain a lifting environment
E during the translation which is used to remember which blocks have been bound so far
and in what region, while we descend recursively.

This environment is modeled as a record consisting of four components. First, it contains
the current region ρ of the term to be translated. Second, it contains the block environment

6 It may further be interspersed with trivial evidence which is, however, translated to the identity function.

Müller, Schuster, Starup, Ostermann, and Brachthäuser 17

Region-and-Evidence Environment:

E = { ρ, ∆, m : Map(dom(∆), Reg × Ev), ΓE }

Translation of Types:

T J (τ) → τ0 Kρ = ∀[r ; r ⊑ ρ] (τ) →r τ0

where r = generateFresh()
T J (σ) → τ0 Kρ = ∀[r , rf ; r ⊑ ρ, r ⊑ rf] (T J σ Krf

) →r τ0

where r , rf = generateFresh()
T J Cap τ1 τ2 Kρ = Cap ρ τ1 τ2

Translation of Environments:
T J ∅ KE = ∅
T J ∆, f : σ KE = T J ∆ KE , f : T J σ KRJ f KE

Translation of Blocks:
BJ f KE = f
BJ { (x : τ) ⇒ s0 }KE = { [r ; n : r ⊑ E.ρ](x : τ) at r ⇒ SJ s0 KE ⊕ n }

where r , n = generateFresh()
BJ { (f : σ) ⇒ s0 }KE =

{ [r , rf ; n : r ⊑ E.ρ, nf : r ⊑ rf](f : T J σ Krf
) at r ⇒ SJ s0 KE′

}
where r , n, rf , nf = generateFresh() and E′ = E ⊕ n, f 7→ (rf nf), rf , nf : r ⊑ rf

Translation of Statements:
SJ return v KE = return v
SJ val x = s0; s KE = val x = SJ s0 KE; SJ s KE

SJ def f = b; s KE = def f = BJ b KE; SJ s KE, f 7→ (RJ b KE CJ b KE)

SJ b(v) KE = BJ b KE[E.ρ; CJ b KE](v)
SJ b(b0) KE = BJ b KE[E.ρ, RJ b0 KE; CJ b KE , CJ b0 KE](BJ b0 KE)
SJ do c(v) KE = do c[CJ c KE](v)
SJ try { (c) ⇒ s0 } with { (x, k) ⇒ s } KE =

try { [r ; n : r ⊑ E.ρ](c) ⇒ SJ s0 KE ⊕ n, c 7→ (r 0) } with { (x, k) ⇒ SJ s KE, k 7→ (E.ρ 0) }
where r , n = generateFresh()

Lookup and Adaptions of Region-and-Evidence Environment:

RJ f KE = ρ where (ρ, e) = E.m(f)
RJ w KE = E.ρ

CJ f KE = e where (ρ, e) = E.m(f)
CJ w KE = 0

∅ ⊕ n = ∅
(m, f 7→ (ρ n0)) ⊕ n = m ⊕ n, f 7→ (ρ n ⊕ n0)

{ ρ, ∆, m, ΓE } ⊕ n = { r , ∆, m ⊕ n, (ΓE , r , n : r ⊑ ρ) } where n : r ⊑ ρ

{ ρ, ∆, m, ΓE }, f 7→ (ρ′ e) = { ρ, (∆, f), (m, f 7→ (ρ′ e)), ΓE }
{ ρ, ∆, m, ΓE }, r , n : ρ ⊑ r = { ρ, ∆, m, (ΓE , r , n : ρ ⊑ r) }

Figure 9 Lift-Inference Translation from System Ξ to Λcap.

∆ of the term to be translated. The types of the blocks in ∆ are not needed in the lifting
environment and we usually omit them, but it eases presentation a bit to just write ∆. The
third component is a map m from the domain dom(∆) of the block environment to pairs of
regions (Reg) and evidence (Ev). The region stands for the region of the definition-site of the
entry and the evidence is supposed to witness that the current region ρ is a subregion of the

TR 2023

18 From Capabilities to Regions: Enabling Efficient Compilation of Lexical Effect Handlers

definition-site region. This invariant is enabled by the second-class property of blocks which
guarantees that each call-site of a block is in a subregion of the region of the definition-site.
To maintain the invariant, the evidence for each block in the map has to be adapted when the
current region changes during the translation. As a fourth component the lifting environment
contains a typing environment ΓE which consists of all the regions and evidence that are
present in map m. The above invariant can now more formally be captured in the following
definition.

▶ Definition 4 (Soundness of Region-and-Evidence Environment).
We call E = { ρ, ∆, m, ΓE } sound if ΓE ⊢ CJ f KE : ρ ⊑ RJ f KE for all f ∈ dom(∆).

Here the functions RJ · K and CJ · K are lookup functions for the region and evidence
component of blocks in the map m, respectively (see Figure 9).

Translation of values Values in System Ξ are either variables or constants, both of which
are translated trivially to the same terms in Λcap. Similarly, value types τ in System Ξ are
only base types and thus remain unchanged. Accordingly, value environments Γ need not
be translated. Therefore, these parts of the calculus are omitted from the presentation in
Figure 9.

Translation of blocks Blocks in System Ξ are translated to values in Λcap. Just as value
variables, block variables are translated trivially. For function blocks we only show the case
of a function with one parameter and treat the cases for a value parameter and a block
parameter separately to ease presentation. Multi-arity functions are translated accordingly
in the obvious way.

In either case the translated function abstracts a fresh region r and fresh evidence n which
witnesses that r is a subregion of the current region. Moreover, the function is annotated to
run in the abstracted region r , i.e., it is region-polymorphic, but the evidence enforces the
constraint that the actual region in which the function will run must be a subregion of the
current region of the definition-site.

In the case of a value parameter the body of the function is translated recursively but
the lifting environment E is adapted to E ⊕ n. This has three effects. The current region
is changed to be the abstracted region r . The evidence component of all entries in the
map m of E is composed with the additional evidence n. This is necessary to maintain the
above-mentioned soundness invariant since the current region has changed. Moreover, r and
n are added to the typing environment ΓE .

In the case of a block parameter f : σ the translated function abstracts an additional
region rf which stands for the region of the definition-site of f and an additional evidence
parameter nf : r ⊑ rf witnessing that the region r the function will run in is a subregion
of rf . As the definition-site region of f is only known when it is actually instantiated, it
is necessary to abstract over it. This region is also used to translate the type σ of f . The
constraint that nf imposes says that the block the parameter f later is instantiated with
must be defined in a superregion of the region in which the whole function is called. The
lifting environment for the translation of the body is first adapted in the same way as in the
case of a value parameter, but must then be further adapted by adding an entry for f . This
entry consists of the pair (rf nf) which satifies the soundness invariant since the current
region now is r . Moreover, rf and nf must be added to the typing environment ΓE .

Note that extending the lifting environment E with new entries for blocks and with
additional region and evidence variables is both written as comma-separated concatenation,
but that the two extensions affect different components of E.

Müller, Schuster, Starup, Ostermann, and Brachthäuser 19

Translation of block types The translation of block types does not need the lifting envi-
ronment as additional input but only a region standing for the region of the definition-site of
the block. For functions, the additionally abstracted region and evidence parameters for the
translated function itself and each of its block parameters are directly reflected in the type.
For capability types the given region is simply added as the region for the capability. The
translation of block environments proceeds by pointwise translation of the types of the block
bindings. However, as the region input must be the definition-site region for each block, we
have to look this region up in the lifting environment E using the lookup function RJ · K for
regions. The translation of block environments therefore does need E as input.

Translation of statements The translation for returning values is trivial and for sequencing
of statements we simply translate the substatements recursively with the same environment.
The definition of a local block b is a bit more interesting. It is translated to the definition
of the translated block (note that this is syntactic sugar in Λcap), but for the translation of
the remaining statement we have to adapt the lifting environment E by inserting an entry
for this newly defined function. Now there are two cases for b. Either it is a block variable
g (i.e., the definition is just aliasing), then it must be in the environment and we have to
look up the correct region and evidence for g in E. Or it is a block value w, then there is no
binding in the environment yet. In this case, the region of the definition-site of the block is
the current region and hence the correct evidence is 0. The translation for this case could
thus instead be defined as

SJ def f = w; s KE = def f = BJ w KE; SJ s KE + f 7→ (E.ρ 0)

However, since the lookup functions RJ · K and CJ · K are defined to yield exactly the above
results for block values, we do not need to distinguish cases in the translation in Figure 9.

Calling a function block b is translated to calling the translated block. We again only
show the cases for one value argument and one block argument, but the generalization to
multi-arity functions is again done in the obvious way. In either case the translated block
has abstracted a region and an evidence parameter. The region parameter stands for the
region in which the function runs, so we instantiate it with the current region. Remember
that the evidence parameter must witness that the region parameter is a subregion of the
definition-site region of b. But as the region parameter was instantiated with the current
region we can exploit the carefully maintained soundness and simply look the correct evidence
up in the lifting environment. Note that if b is an anonymous block value, the definition-site
region is the current region and so the trivial evidence yielded by the lookup function for
evidence is correct. In the case of a block parameter we have to translate the block argument
b0 as well, of course. But we additionally have to supply a region and evidence for the
corresponding parameters that have been abstracted for the block parameter. Both of these
can simply be looked up, too, since the region lookup will yield the region of the definition-site
of b0 and soundness again makes sure that the corresponding evidence is correct.

Translating an applied capability is similar to calling a function with a value parameter,
the needed evidence is simply looked up. The difference is just that no region needs to be
supplied as capabilities are not region-polymorphic. The region of their definition-site always
is the fresh region abstracted at the translation of the corresponding handler statement. This
can be seen in the translation of a handler which consists of the translation of the handler
statement and the translation of the implementation statement. The former is similar to
how function blocks with a block parameter are translated. The lifting environment E is first
adapted with the newly abstracted evidence n and then an entry for the capability c is added.

TR 2023

20 From Capabilities to Regions: Enabling Efficient Compilation of Lexical Effect Handlers

As the region for this entry now is the current one, the corresponding evidence is trivial, i.e.,
0. Note that since the fresh abstracted region is already added to the typing environment ΓE
by E ⊕ n, it is not necessary to do this in an extra step. For the implementation statement,
no region and evidence is abstracted, so we only have to add an entry for the continuation
parameter k to E. The region for k is the current one, that is, the one the whole handler is
defined in. The evidence for k thus again is 0.

3.4.1 Example
To illustrate the lift-inference translation, we consider again the example from Subsection
2.2, or more precisely the definition of call.

def call = { (f : Int → Int) ⇒
val x = f(1);
try { (yield2) ⇒ f(x) }
with { (j, k) ⇒ 42 }

};

Starting with the empty lifting environment E = { ⊤, ∅, ∅, ∅ }, we show how the environ-
ment changes as the translation proceeds. In the first step, regions and evidence for call
and f are abstracted, the type of f is translated with the abstracted region and the region
annotation is added. Thus, we obtain

def call = { [rc, rf; nc : rc ⊑ ⊤, nf : rc ⊑ rf](
f : ∀[r; r ⊑ rf](Int) →r Int

) at rc ⇒ SJ ... KE′

};

The lifting environment for the recursive translation of the body is adapted since we have
entered a new region and since we have to add a new entry for the block parameter. It
becomes

E′= E ⊕ nc, f 7→ (rf nf), rf, nf : rc ⊑ rf
= { rc, (f), (f 7→ (rf nf)), (rc, nc : rc ⊑ ⊤, rf, nf : rc ⊑ rf) }

In the translation of the body, the translation of the first application of f is a simple matter
of looking up the current region and the evidence for f in the environment. The effect handler
is endowed with a fresh region and evidence and the substatements are translated recursively.
As the implementation statement is just a value, it is translated trivially, and we obtain

val x = f[rc; nf](1);
try { [r2; n2 : r2 ⊑ rc](yield2) ⇒ SJ f(x) KE′′

}
with { (j, k) ⇒ 42 }

The lifting environment is adapted for the new region we have entered and a new entry for
the capability is added. Importantly, the evidence for the existing binding for f is adapted
and we find

E′′ = E′ ⊕ n2, yield2 7→ (r2 0)
= { r2, (f, yield2), (f 7→ (rf n2 ⊕ nf), yield2 7→ (r2 0)), (ΓE′ , r2, n2 : r2 ⊑ rc) }

The translation of the second application of f is again a simple matter of looking up the
current region and the evidence for f in the environment. As the latter is kept sound during
the translation, the evidence is exactly right,

f[r2; n2 ⊕ nf](x)

Müller, Schuster, Starup, Ostermann, and Brachthäuser 21

3.5 Properties of Lift Inference
For the lift-inference translation to be sensible it should be typability- and semantics-
preserving.

Typability preservation For the proof of typability preservation we make heavy use of the
soundness of the lifting environment. To do so, we need the following lemma stating that
soundness is maintained during the translation.

▶ Lemma 5 (Soundness of Environments for the Lift-Inference Translation).
All adaptions of lifting environments made by the lift-inference translation take sound
environments to sound environments.

This enables the theorem that the translation takes well-typed terms in System Ξ to well-typed
terms in Λcap. The proof is given in Appendix A.1.

▶ Theorem 6 (Typability Preservation for the Lift-Inference Translation).
For E = { ρ, ∆, m, ΓE } sound,
if Γ ∆ ⊢ s : τ , then ΓE , Γ, T J ∆ KE

ρ ⊢ SJ s KE : τ ;
if Γ ∆ ⊢ b : σ, then ΓE , Γ, T J ∆ KE ⊢ BJ b KE : T J σ KRJ b KE ;
if Γ ⊢ v : τ , then ΓE , Γ ⊢ v : τ .

Since the empty environment ∅ = { ⊤, ∅, ∅, ∅ } is trivially sound, Theorem 6 implies
typability preservation for the translation of closed terms starting with the empty environment.

Semantics preservation For semantics preservation note that the operational semantics of
both calculi mainly differs in the presence of regions and evidence in Λcap. As noted before,
these are irrelevant for the operational semantics and can thus be erased. Then the only
difference is that there is no rule for reduction of function definitions in Λcap. It is replaced
by two consecutive rules. Hence, we obtain the following result. Some more details are given
in Appendix A.2.

▶ Theorem 7 (Evaluation for the Lift-Inference Translation).
If ∅ ∅ ⊢ s : τ and ⟨ s ∥ #start :: • ⟩ →n + k ⟨ return v || • ⟩,
then ⟨ SJ s K∅ ∥ #start :: • ⟩ →n + 2k ⟨ return v || • ⟩,
where k is the number of steps for function definitions and n the number of other steps in
System Ξ.

Note that together with the corresponding results of the papers we build on (see the overview
in Figure 1), the above theorems guarantee typability and semantics preservation along the
whole compilation pipeline down to System F, fully proven. Hence, a well-typed term in
Effekt is guaranteed to have the same semantics after translation to System F. In particular,
type safety implies effect safety and thus guarantees that no effect goes unhandled.

4 Evaluation

To evaluate our approach, we have implemented lift inference for the Effekt language. This
way, we could close the gap illustrated in Section 1 and write benchmark programs directly
in Effekt. We first describe the implementation and some limitations, before we discuss the
benchmark results.

TR 2023

22 From Capabilities to Regions: Enabling Efficient Compilation of Lexical Effect Handlers

4.1 Implementation
Effekt is a functional language with support for lexical effect handlers, effect inference, data
types, type polymorphism, interface types that generalize functions, backtrackable local
state, and many more features. The implementation of the compiler amounts to around 23k
lines of code in Scala. For this paper, we have extended the Effekt compiler in two ways. We
have implemented the lift-inference translation presented in Subsection 3.4, and we have
implemented a new backend targeting SML in continuation-passing style.

4.1.1 Lift Inference
The overview in Figure 1 doubles as an overview over the compiler phases in the Effekt
compiler. A translation of the source language to explicit capability-passing System Ξ,
which is called Core in the implementation, was already implemented by Brachthäuser et al.
[4]. To evaluate the feasibility of the translation described in this paper, we have added
a new intermediate representation that corresponds to Λcap, which is called Lifted in the
implementation. Lifted is typed and includes explicit subregion evidence, but regions are
erased from the type level.

Both Core and Lifted differ from the presentation in this paper in that they also support
various other features of the language, such as data types, pattern matching, local mutable
state, and more. Like Leijen [21], the Effekt compiler also distiguishes potentially effectful ex-
pressions from pure expressions, in order to generate more efficient code. The implementation
of lift inference itself is a straightforward translation of the algorithm presented in Section 3.4
to Scala. The lifting environment E is implemented as a Map[Symbol, List[Lift]] mapping
block variables (i.e., Symbols) to a chain of evidence variables (i.e., Lifts) that witness the
subregion relationship.

4.1.2 SML Backend in CPS
The translation from Λcap to System F in iterated continuation-passing style is conceptually
described by Schuster et al. [36]. However, they do not present an implementation. As a
second implementation step for this paper, we have thus implemented a translation from
Lifted to Standard ML [26] in continuation-passing style. Specifically, we target MLton since
it is a whole program optimizing compiler. We conjectured that MLton could discover many
of the static abstractions identified by Schuster et al. [35] at compile-time and thus heavily
optimize the generated programs in CPS. We can, however, imagine that a setting with
separate compilation could profit from lift inference as well. For example, our approach might
be applied within a compilation unit and one might moreover rely on link-time optimizations
or just-in-time compilation to obtain further improvements from lift inference at runtime.
We leave closer investigation of this to future work.

While the translation conceptually translates effectful programs to pure System F, in the
toplevel region our implementation supports all native effects present in the target language,
like native mutable references, file IO, etc.

Our CPS translation employs standard techniques to avoid administrative β- and η-
redexes [6, 34], is curried [13, 36], but not fully iterated [34, 35], which is to say that we
do not abstract more than one continuation in function definitions. Rather, additional
continuation parameters are added by instantiating the answer type with another layer of
CPS as required.

Effekt has higher-rank polymorphism originating from function parameters as well as from
polymorphic effect signatures (e.g., effect Exc { def raise[A](): A }). Since SML is a

Müller, Schuster, Starup, Ostermann, and Brachthäuser 23

language with a Hindley-Milner-style [16, 25] type system, it does not support higher-rank
polymorphism. Due to this limitation, our SML backend currently does neither support
higher-rank function types nor polymorphic effect signatures.

Another problem is that the translation from Λcap to System F presented by Schuster et al.
[36] makes heavy use of higher-rank types. Region abstractions are translated to type abstrac-
tions which makes region-polymorphic function parameters have a higher-rank type. Moreover,
the type of subregion evidence ρ1 ⊑ ρ2 is translated to ∀a. Cps T J ρ2 K a → Cps T J ρ1 K a.
Functions that take evidence parameters, which are virtually all translated functions, have
rank-2 type. While this might sound like a severe limitation, we observed that in many
functions evidence is not actually used but only passed on and thus can often be treated
parametrically. When evidence is actually used, its type argument is often inferred monomor-
phically. However, using the same evidence at two different types in HM will lead to a type
mismatch, a problem not present in System F.

In order to admit more Effekt programs to be translated to SML, we perform evidence
monomorphization, where we effectively partially evaluate programs with respect to evidence
and specialize effect handler implementations to the region they are called in. We consider
both, the limitation of SML not supporting higher-rank types, as well as the implemented
evidence monomorphization as non-essential aspects of the present paper. We could have
chosen an arbitrary different target platform that does support higher-rank types.

4.2 Benchmarks

One of our goals was to reproduce the performance results of Schuster et al. [35] in a realistic
source-level language, in particular, their conjecture that specialized optimizations or special
reduction theories are not needed to remove abstraction overhead; rather, existing optimizing
compilers can do the job. In Table 1 we present the results of measuring the running time of
programs written in Effekt and compiled to our SML backend against the running time of the
same programs written in other languages with effect handlers. The benchmark programs
are taken from a community benchmark suite that has been designed specifically for effect
handler implementations [15]. The repository contains detailed explanations for each of
the benchmark programs. Benchmarks were conducted on a 12th Gen Intel(R) Core(TM)
i7-1255U running Ubuntu 22.04.

Table 1 Benchmark results comparing Eff, OCaml, Koka, our implementation of lift inference in
Effekt, and a hand-optimized baseline. Fastest mean for each benchmark is highlighted in gray.

Mean time in ms (standard deviation)
Benchmark Eff OCaml Koka Effekt Baseline
Countdown (200M) 72.0 (±13.2) 1976.1 (±26.6) 1598.0 (±24.0) 44.5 (±1.0) 44.5 (±0.9)
Fibonacci (42) 1093.6 (±5.5) 1161.5 (±12.0) 1222.6 (±27.0) 1335.4 (±12.0) 1335.4 (±24.5)
Product Early (100k) 535.7 (±71.9) 113.0 (±0.4) 1506.6 (±20.0) 238.2 (±33.4) 113.0 (±0.9)
Iterator (40M) 516.3 (±17.6) 195.4 (±1.3) 1082.0 (±9.6) 92.5 (±10.7) 13.7 (±0.5)
Queens (12) 262.2 (±6.1) 635.6 (±1.8) 2643.5 (±26.6) 117.2 (±0.3) 96.6 (±1.0)
Tree Explore (16) 161.1 (±3.8) 142.9 (±2.2) 278.4 (±5.1) 187.1 (±4.4) 179.1 (±2.0)
Triples (300) 125.0 (±4.4) 315.5 (±3.3) 2635.8 (±11.4) 30.0 (±0.5) 25.1 (±0.4)
Resume Non-tail (10k) 182.4 (±15.9) 190.4 (±1.0) 1601.5 (±16.6) 85.9 (±3.5) 62.5 (±3.0)
Parsing (20k) 2061.7 (±177.3) 1443.5 (±14.6) 3220.4 (±253.6) 88.6 (±0.8) 88.1 (±1.0)

TR 2023

24 From Capabilities to Regions: Enabling Efficient Compilation of Lexical Effect Handlers

4.2.1 Systems
We compare Eff, Multicore OCaml, and Koka with our own implementation in Effekt. Eff [32,
18] is a language with effect handlers and specific optimizations for those. After optimization
it generates OCaml code which is then compiled with ocamlopt 4.14.1. Unfortunately,
investigation of the generated code reveals that in many programs the specialization of
functions to handlers is not triggered. Multicore OCaml [8] 4.12.0 is a language with effect
handlers and a very fast runtime. While it does not officially support multiple resumptions,
which some benchmarks use, it has limited support for those which is sufficient to run these
benchmarks. Koka [43] is a language with effect handlers, a fast runtime, and an optimizing
compiler. The Koka compiler generates C code which then is further compiled with gcc.
Our own Effekt compiler produces code in Standard ML and then uses MLton 20210117 to
compile it. We instruct MLton to choose numbers to be 64bit integers to match the behavior
of the other languages. Finally, as a baseline, we have taken the programs produced by our
Effekt compiler and minimized and hand-optimized them using native effects where possible.

4.2.2 Results
Our findings (presented in Table 1) are generally positive. Effekt outperforms the other
languages in most benchmarks, sometimes by an order of magnitude. Speedups range from
around 1.6x–16.3x to the next best system for each particular benchmark. On the other
side, we only observe slowdowns of 1.2x–2.1x compared to the best system for the specific
benchmark. Our benchmarks are available as an artifact (see Section 7).

The Countdown benchmark uses the state effect to tail-recursively count down from
a given number. Some implementations (OCaml and Koka) use references to implement
the state effect, others (such as Eff and ours after evidence monomorphization) modify the
answer type to be a function taking the state. In OCaml and Koka getting and setting the
state goes through performing an effect operation, while Eff and Effekt are able to optimize
this indirection away.

The Fibonacci benchmark does not actually use effect handlers. Eff, Koka, and Effekt
generate special code for pure functions and the performance is competitive. The code
generated by Eff and Effekt (after MLton optimizations) is very similar to the handwritten
direct-style OCaml code and runtime differences amount to the different language runtimes
used to execute the code.

The Product Early benchmark pushes 1,000 frames onto the stack and then discards all
of them by throwing an exception. We can see a slowdown compared to native exceptions
in OCaml and in the MLton baseline. This is due to the fact that the implementations
of exceptions in both runtimes are very efficient and indeed faster than our approach of
translating to CPS.

The Iterator benchmark models push streams by using an effect to emit values. The
handler uses state to add all values and calls the continuation in tail position. We can see
speedups compared to OCaml of around 2.1x. The optimizations performed by Eff seem
to be blocked and thus the handler is not optimized away. We expect this problem to be
technical and not fundamental in their approach.

The Queens benchmark searches for a solution to place n queens on a chessboard. It
heavily uses continuations in a non-trivial way to perform backtracking search. We can
observe a speedup of 2.2x over Eff, but note again that their optimizations seem to be
blocked.

The Tree Explore benchmark constructs a tree and then traverses it to collect all leaves.

Müller, Schuster, Starup, Ostermann, and Brachthäuser 25

It uses a choice effect to simulate a non-deterministic traversal. We can see a slowdown of
1.3x compared to OCaml. The reason for this is again the difference between OCaml and
MLton. Indeed, we have translated the code we generate from Standard ML to OCaml and
observed that it runs faster than the OCaml variant using native effects.

The Triples benchmark makes heavy use of continuations to perform a backtracking
search. We see speedups of around 4.2x compared to Eff, but yet again note that the rewrite
rules of Karachalias et al. [18] seem not to be applied fully.

The Resume Non-tail benchmark calls an effect operation in a loop. The handler resumes
in non-tail position and thus aggregates N stack frames. After the loop returns, the stack
frames are popped one-after-another. Again, we can see speedups of 2.1x over Eff, where the
rewrites are not fully applied.

Finally, the Parsing benchmark defines a streaming parser which uses three effects:
def parse(a: Int): Unit / {Read, Emit, Stop} = ...

The Read effect reads a character, the Emit effect emits the result of parsing a line, and the
Stop effect stops when an unrecognized character is found. The function parse is used under
three handlers, one for each of the effects:

sum { catch { feed(n) { parse(0) } } }

The program has non-trivial control flow, which is abstracted away by the use of effect handlers.
Moreover we could use the same function parse with a different source of characters and a
different target of emitted values. Our Effekt implementation significantly outperforms the
other languages by a factor of 16.3x–36.3x. It is the only benchmark that relies on evidence
monomorphization in order to compile. Our implementation specializes this function to
the handlers surrounding it, which after optimization results in a single tight loop, which
is exactly our original goal: to remove all abstraction overhead introduced by using effect
handlers.

In general, our approach works better in the cases where effects and resumptions are used
extensively. In these cases we observe large speedups over the other implementations. That
said, the optimizations for Eff were often blocked in these benchmarks. We would expect
the results for Eff to be much closer to ours, if the optimizations kick in. Our results are
often quite close to the hand-optimized baseline. In these cases our implementation, of which
lift-inference is an integral part, is able to remove all abstraction introduced by the use of
effect handlers to structure the program. In the other cases, more investigation is needed in
order to remove the gap between compiled code using effect handlers and hand-optimized
code using native effects.

5 Related Work

We have presented a translation from System Ξ, a calculus with second-class capabilities to
Λcap, a calculus with region-based effects. In combination with a translation to iterated CPS
this enables efficient compilation of effect handlers. In this section, we compare our approach
to existing work.

5.1 Efficient Compilation of Effect Handlers
Closely related is the work on explicit effect subtyping for algebraic effect handlers in Eff [32].
Their main motivation is to use this explicit information in the optimization of programs
using effect handlers [18]. In particular, they define source-to-source rewrite rules on an
intermediate representation called ExEff. The rewrite rules are designed to propagate

TR 2023

26 From Capabilities to Regions: Enabling Efficient Compilation of Lexical Effect Handlers

handlers down until they reach an effect operation in which case the effect operation can be
statically reduced. Intermediate frames are aggregated in the return clause of the handler.
While our motivation is ultimately the same, our work is in the context of lexical effect
handlers as they appear in Effekt. Also, we do not define a reduction theory on a language
with effects and handlers, but instead (via Λcap) define a translation to System F in CPS.
This way, existing optimizing compilers for functional languages (such as SML) can readily
be used. Karachalias et al. [18] support first-class functions which makes their language
more general than ours. While their explicitly typed language applies subtyping coercions to
arbitrary computations, we pass evidence values along and only use them at effect operations
where they are needed.

Also highly related in this regard is the work on evidence passing [44, 43], which provides
the basis for the implementation of effect handlers in the Koka language. The idea is to pass
evidence vectors down to effect operations. These evidence vectors consist of pairs of labels
and handler implementations so that handlers can be looked up in place. In contrast, evidence
in Λcap is just a list of labels and the handler implementations are passed as capabilities.
Evidence passing is defined in the context of dynamically scoped handlers and hence does not
reflect the lexical nesting of handlers as regions and subregion evidence in Λcap do. Xie et al.
[44] define an evidence passing translation from an algebraic effect calculus to an evidence
calculus, thus determining the evidence vectors statically. This translation is facilitated by
the effect system of the algebraic effect calculus based on rows of effect labels. In contrast,
our source calculus System Ξ does not feature a visible effect system and instead relies on
second-class capabilities. Xie and Leijen [43] do not define a translation but achieve evidence
passing by defining appropriate evaluation rules for the algebraic effect calculus, hence
their evidence vectors are created dynamically. This allows them to lift the restriction of
scoped resumptions, imposed by Xie et al. [44]. Both approaches support first-class functions.
Moreover, both papers define a translation to System Fv, a polymorphic lambda calculus with
support for multi-prompt monads. Instead, by building on Schuster et al. [36], we directly
compile to System F in CPS.

5.2 Languages with Second-Class Values
Our lift inference consumes programs in System Ξ [4], a language with second-class functions
and capabilities. It is inspired by the work of Osvald et al. [28] who present λ1/2 a lambda
calculus that features both first-class and second-class functions, but no control effects.
Their work in turn builds on type-based escape analysis [12]. In λ1/2, second-class functions
cannot be returned, nor closed over by first-class functions. In contrast, System Ξ does not
support first-class functions and in consequence our translation does not have to handle
them. We do not expect any complications in extending System Ξ and our translation to
first-class functions in the style of λ1/2—that is, to first-class functions that cannot close
over second-class functions and capabilities. As they do not contain capabilities that need to
satisfy some subregion constraint, they can always run in the toplevel region, so we could
just pretend that one to be their definition-site region.

Brachthäuser et al. [5] present System C as an extension of System Ξ to support a fine-
grained notion of second-class values. Their calculus introduces explicit box and unbox
constructs, inspired by modal logics. They also extend the type system to track which
capabilities are used by a statement or block. Boxing takes a second-class block and turns it
into a first-class value, where the type of the boxed block specifies the necessary capabilities
(e.g., Int ⇒ Int at {yield}). To call a boxed function it needs to be unboxed first.
When unboxing, the type system ensures that the necessary capabilities are still available,

Müller, Schuster, Starup, Ostermann, and Brachthäuser 27

preventing functions from closing over capabilities and then leaving the scope of a handler.
This system is more expressive than λ1/2 and it is less clear to us how to translate the sets of
capabilities (e.g., {yield}) to the corresponding region. We leave studying the translation
of System C to Λcap to future work.

Xhebraj et al. [42] present another variant of λ1/2, called λ
1/2
←↩ , which supports returning

second-class functions and is designed to be used for stack allocating memory. Safety is
achieved by modifying the runtime semantics: When a second-class value is returned, the
returning frame is simply not removed. While this is an elegant solution, our goal is to target
standard runtime systems like System F.

5.3 Languages with Regions and Subregioning
Our lift inference produces programs in Λcap [36] featuring explicit regions and subregion
evidence. We use a generalization which allows for non-scoped continuations. While we
follow Schuster et al. [36] and use regions and evidence to track the lexical nesting of
handlers on the stack, the original usage of regions is in memory management [40] and more
generally resource management. Our notion of regions could in principle also be used for
resource management. A recent calculus in this regard which is close to Λcap is presented
by Schuster et al. [37]. They use regions and subregion evidence to deal with the management
of resources in the presence of exception handlers. In contrast to this work, they do not
deal with general effect handlers and do not consider inference of regions and evidence. The
work of Schuster et al. [37] is based on Kiselyov and Shan [20], who also perform region
inference. Their approach, however, is very different from ours, as they encode regions
using monad transformers and hence rely on type inference to infer regions. Likewise, other
algorithms [40, 41] for region inference in the context of memory management are different
from ours, often creating fresh regions for each variable and subsequently analysing which
of them can be unified. In contrast to this prior work, we infer regions by establishing a
connection between the lexical scoping of second-class values and regions.

It might be especially interesting to consider our CPS translation with a target language
which already has a notion of regions, like the ML Kit [41], and potentially try to preserve
region annotations. We leave exploration of this to future work.

5.4 Dictionary Passing and Monad Polymorphism in Haskell
In Haskell it is typical to use stacks of monad transformers [23] and type classes to compose
different programs using different effects into one [17]. When type classes are implemented
by dictionary passing, this is not unlike our passing of capabilities, but implicit. When
effect operations corresponding to a lower layer in the monad-transformer stack are used,
they have to be lifted through all layers above, just like in our work. Finding the correct
composition of lifts is automatic and works by type class resolution guided by the type of
computations. In contrast to this, we assume that capabilities are passed explicitly and find
the correct composition of evidence by a transformation guided by program terms. This has
the advantage that different instances of the same effect are easily disambiguated by passing
different capabilities.

This problem was observed by Figueroa et al. [11] and named effect interference. For
them, the interference between different instances of the same effect is also a security concern.
As a solution they propose the explicit passing of capabilities. However, their notion of
capability is different from ours in that they use them to ensure certain security guarantees
on top of monad transformers while we use them as an implementation technique for effect

TR 2023

28 From Capabilities to Regions: Enabling Efficient Compilation of Lexical Effect Handlers

handlers. Consequently, our capabilities contain the operation to execute when they are used
while theirs do not.

Schrijvers et al. [33] compare and contrast monad transformers and the traditional
implementation of dynamic effect handlers in terms of a free monad in Haskell. There, the
problem of lift inference manifests in a different way. Effectful programs are written against
an open union of signatures [19]. The challenge is for a given effect operation to find the
correct injection into this open union. Again, Haskell type classes can be used for this to
some extent.

However, using type class resolution to find the correct handler is problematic when
there are multiple instances of the same effect in the same program. As a solution, Devriese
[7] propose explicit passing of type class dictionaries, which essentially are what we call
capabilities. Moreover, in order to nest handlers, they propose the explicit use of liftings,
essentially what we call evidence. They also present a case study that speaks for the feasibility
of their explicit approach. We, however, infer the correct use of evidence, so programmers do
not have to do so explicitly. In their setting liftings are general monad morphisms, while in
our setting we specialize them to the continuation- and state monads. Another difference
is that they apply these liftings to capabilities, while we pass evidence to the places where
capabilities are used.

6 Conclusion

In this paper, we have presented a way to infer lifting information for lexical effects and
handlers, by giving a typed translation from a calculus System Ξ with second-class capabilities
to a calculus Λcap with explicit regions and subregion evidence. Our translation preserves
typability and semantics. It makes use of the second-class property to provide a clear
connection for the definition-site and each call-site of a function. This establishes a precise
relation between reasoning based on the second-class property and region-based regioning.

Moreover, we have evaluated the implications of lift inference practically, by implementing
it as a compiler phase for a source-level language. To this end, we have further implemented
the CPS translation for Λcap described by Schuster et al. [36], which makes heavy use of
the information provided by lift inference to enable efficient compilation of effect handlers.
Our benchmarks indicate that our approach is competitive with other state-of-the-art
implementations of effect handlers and often outperforms them.

While the second-class property of our source calculus is particularly helpful for lift
inference, it can sometimes be a restriction in programming. In the future, it would be
interesting to investigate whether it is possible to extend our approach to a language which
has a controlled way of using effectful first-class functions, as described, e.g., by Brachthäuser
et al. [5]. Furthermore, it would be interesting to see how lift inference can be performed for
languages with traditional effect handlers. Also, while System Ξ uses types to enforce the
second-class property for capabilities, we believe that any mechanism to enforce this would
do. But we leave a fully precise exploration of this for future work.

7 Data-Availability Statement

The benchmarks from Section 4 are available to be run in a Docker container in the
accompanying artifact [27].

REFERENCES 29

Acknowledgments

We thank Matthew Fluet for his helpful assistance with MLton. The work on this project was
supported by the Deutsche Forschungsgemeinschaft (DFG – German Research Foundation) –
project number DFG-448316946.

References

1 A. Bauer and M. Pretnar. Programming with algebraic effects and handlers. Journal
of Logical and Algebraic Methods in Programming, 84(1):108–123, 2015. doi: 10.1016/j.
jlamp.2014.02.001.

2 D. Biernacki, M. Piróg, P. Polesiuk, and F. Sieczkowski. Handle with care: Relational
interpretation of algebraic effects and handlers. Proc. ACM Program. Lang., 2(POPL):
8:1–8:30, Dec. 2017. ISSN 2475-1421. doi: 10.1145/3158096.

3 D. Biernacki, M. Piróg, P. Polesiuk, and F. Sieczkowski. Binders by day, labels by night:
Effect instances via lexically scoped handlers. Proc. ACM Program. Lang., 4(POPL),
Dec. 2019. doi: 10.1145/3371116.

4 J. I. Brachthäuser, P. Schuster, and K. Ostermann. Effects as capabilities: Effect handlers
and lightweight effect polymorphism. Proc. ACM Program. Lang., 4(OOPSLA), Nov.
2020. doi: 10.1145/3428194.

5 J. I. Brachthäuser, P. Schuster, E. Lee, and A. Boruch-Gruszecki. Effects, capabilities,
and boxes: From scope-based reasoning to type-based reasoning and back. Proc. ACM
Program. Lang., 6(OOPSLA), apr 2022. doi: 10.1145/3527320.

6 O. Danvy and A. Filinski. Representing control: A study of the CPS transfor-
mation. Mathematical Structures in Computer Science, 2(4):361–391, 1992. doi:
10.1017/S0960129500001535.

7 D. Devriese. Modular effects in haskell through effect polymorphism and explicit dictionary
applications: A new approach and the µverifast verifier as a case study. In Proceedings of
the 12th ACM SIGPLAN International Symposium on Haskell, Haskell 2019, page 1–14,
New York, NY, USA, 2019. Association for Computing Machinery. ISBN 9781450368131.
doi: 10.1145/3331545.3342589. URL https://doi.org/10.1145/3331545.3342589.

8 S. Dolan, L. White, and A. Madhavapeddy. Multicore OCaml. In OCaml Workshop,
2014.

9 R. K. Dybvig, S. Peyton Jones, and A. Sabry. A monadic framework for delimited
continuations. Journal of Functional Programming, 17(6):687–730, Nov. 2007. ISSN
0956-7968. doi: 10.1017/S0956796807006259.

10 K. Farvardin and J. Reppy. From folklore to fact: Comparing implementations of
stacks and continuations. In Proceedings of the 41st ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI 2020, page 75–90, New York,
NY, USA, 2020. Association for Computing Machinery. ISBN 9781450376136. doi:
10.1145/3385412.3385994. URL https://doi.org/10.1145/3385412.3385994.

11 I. Figueroa, N. Tabareau, and E. Tanter. Effect capabilities for haskell: Taming effect
interference in monadic programming. Science of Computer Programming, 119, Nov 2015.
doi: 10.1016/j.scico.2015.11.010.

12 J. Hannan. A type-based escape analysis for functional languages. Journal of Functional
Programming, 8(3):239–273, May 1998. doi: 10.1017/S0956796898003025.

13 D. Hillerström, S. Lindley, B. Atkey, and K. Sivaramakrishnan. Continuation passing
style for effect handlers. In Formal Structures for Computation and Deduction, volume 84
of LIPIcs. Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 2017.

TR 2023

https://doi.org/10.1145/3331545.3342589
https://doi.org/10.1145/3385412.3385994

30 REFERENCES

14 D. Hillerström, S. Lindley, and R. Atkey. Effect handlers via generalised continuations.
Journal of Functional Programming, 30:e5, 2020. doi: 10.1017/S0956796820000040.

15 D. Hillerström, F. Koprivec, and P. Schuster (benchmarking chairs). Effect han-
dlers benchmarks suite. 2023. URL https://github.com/effect-handlers/
effect-handlers-bench.

16 J. Hindley. The principal type scheme of an object in combinatory logic. Trans. of the
American Mathematical Society, 146:29–60, Dec. 1969. doi: 10.2307/1995158.

17 M. P. Jones. Functional programming with overloading and higher-order polymorphism.
In J. Jeuring and E. Meijer, editors, Advanced Functional Programming, pages 97–136,
Berlin, Heidelberg, 1995. Springer Berlin Heidelberg. doi: 10.1007/3-540-59451-5_4.

18 G. Karachalias, F. Koprivec, M. Pretnar, and T. Schrijvers. Efficient compilation of
algebraic effect handlers. Proc. ACM Program. Lang., 5(OOPSLA), oct 2021. doi:
10.1145/3485479. URL https://doi.org/10.1145/3485479.

19 O. Kiselyov and H. Ishii. Freer monads, more extensible effects. In Proceedings of the
Haskell Symposium, pages 94–105, New York, NY, USA, 2015. ACM. doi: 10.1145/
2887747.2804319.

20 O. Kiselyov and C.-c. Shan. Lightweight monadic regions. In Proceedings of the Haskell
Symposium, Haskell ’08, New York, NY, USA, 2008. ACM. doi: 10.1145/1411286.1411288.

21 D. Leijen. Type directed compilation of row-typed algebraic effects. In Proceedings of
the Symposium on Principles of Programming Languages, pages 486–499, New York, NY,
USA, 2017. ACM. doi: 10.1145/3093333.3009872.

22 P. B. Levy, J. Power, and H. Thielecke. Modelling environments in call-by-value pro-
gramming languages. Information and Computation, 185(2):182–210, 2003. ISSN
0890-5401. doi: 10.1016/S0890-5401(03)00088-9. URL https://doi.org/10.1016/
S0890-5401(03)00088-9.

23 S. Liang, P. Hudak, and M. Jones. Monad transformers and modular interpreters. In
Proceedings of the Symposium on Principles of Programming Languages, pages 333–343,
New York, NY, USA, 1995. ACM. doi: 10.1145/199448.199528.

24 S. Lindley, C. McBride, and C. McLaughlin. Do be do be do. In Proceedings of the
Symposium on Principles of Programming Languages, pages 500–514, New York, NY,
USA, 2017. ACM. doi: 10.1145/3009837.3009897.

25 R. Milner. A theory of type polymorphism in programming. Journal of Computer and
System Sciences, 17:248–375, 1978. doi: 10.1016/0022-0000(78)90014-4.

26 R. Milner, M. Tofte, R. Harper, and D. MacQueen. The definition of standard ML:
revised. MIT press, 1997. doi: 10.7551/mitpress/2319.001.0001.

27 M. Müller, P. Schuster, J. L. Starup, K. Ostermann, and J. I. Brachthäuser. Artifact
of the paper ’From Capabilities to Regions: Enabling Efficient Compilation of Lexical
Effect Handlers’, Sept. 2023.

28 L. Osvald, G. Essertel, X. Wu, L. I. G. Alayón, and T. Rompf. Gentrification gone too
far? affordable 2nd-class values for fun and (co-) effect. In Proceedings of the Conference
on Object-Oriented Programming, Systems, Languages and Applications, pages 234–251,
New York, NY, USA, 2016. ACM. doi: 10.1145/3022671.2984009.

29 G. Plotkin and M. Pretnar. Handlers of algebraic effects. In European Symposium on
Programming, pages 80–94. Springer-Verlag, 2009. doi: 10.1007/978-3-642-00590-9_7.

30 G. D. Plotkin and M. Pretnar. Handling algebraic effects. Logical Methods in Computer
Science, 9(4), 2013. doi: 10.2168/LMCS-9(4:23)2013.

https://github.com/effect-handlers/effect-handlers-bench
https://github.com/effect-handlers/effect-handlers-bench
https://doi.org/10.1145/3485479
https://doi.org/10.1016/S0890-5401(03)00088-9
https://doi.org/10.1016/S0890-5401(03)00088-9

REFERENCES 31

31 M. Pretnar, A. H. S. Saleh, A. Faes, and T. Schrijvers. Efficient compilation of algebraic
effects and handlers. Technical report, Department of Computer Science, KU Leuven;
Leuven, Belgium, 2017.

32 A. H. Saleh, G. Karachalias, M. Pretnar, and T. Schrijvers. Explicit effect subtyping.
In A. Ahmed, editor, Programming Languages and Systems, pages 327–354, Cham,
Switzerland, 2018. Springer International Publishing. ISBN 978-3-319-89884-1. doi:
10.1007/978-3-319-89884-1_12.

33 T. Schrijvers, M. Piróg, N. Wu, and M. Jaskelioff. Monad transformers and modular
algebraic effects: What binds them together. In Proceedings of the 12th ACM SIGPLAN
International Symposium on Haskell, Haskell 2019, page 98–113, New York, NY, USA,
2019. Association for Computing Machinery. ISBN 9781450368131. doi: 10.1145/3331545.
3342595. URL https://doi.org/10.1145/3331545.3342595.

34 P. Schuster and J. I. Brachthäuser. Typing, representing, and abstracting control. In
Proceedings of the Workshop on Type-Driven Development, pages 14–24, New York, NY,
USA, 2018. ACM. doi: 10.1145/3240719.3241788.

35 P. Schuster, J. I. Brachthäuser, and K. Ostermann. Compiling effect handlers in capability-
passing style. Proc. ACM Program. Lang., 4(ICFP), Aug. 2020. doi: 10.1145/3408975.

36 P. Schuster, J. I. Brachthäuser, M. Müller, and K. Ostermann. A typed continuation-
passing translation for lexical effect handlers. In Proceedings of the 43rd ACM SIGPLAN
International Conference on Programming Language Design and Implementation, PLDI
2022, page 566–579, New York, NY, USA, 2022. Association for Computing Machinery.
ISBN 9781450392655. doi: 10.1145/3519939.3523710.

37 P. Schuster, J. I. Brachthäuser, and K. Ostermann. Region-based resource management
and lexical exception handlers in continuation-passing style. In I. Sergey, editor, Pro-
gramming Languages and Systems, pages 492–519, Cham, 2022. Springer International
Publishing. ISBN 978-3-030-99336-8. doi: 10.1007/978-3-030-99336-8_18.

38 K. Sivaramakrishnan, S. Dolan, L. White, T. Kelly, S. Jaffer, and A. Madhavapeddy.
Retrofitting effect handlers onto ocaml. In Proceedings of the 42nd ACM SIGPLAN
International Conference on Programming Language Design and Implementation, PLDI
2021, page 206–221, New York, NY, USA, 2021. Association for Computing Machinery.
ISBN 9781450383912. doi: 10.1145/3453483.3454039. URL https://doi.org/10.1145/
3453483.3454039.

39 H. Thielecke. From control effects to typed continuation passing. In Proceedings of the 30th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL
’03, page 139–149, New York, NY, USA, 2003. Association for Computing Machinery.
ISBN 1581136285. doi: 10.1145/604131.604144.

40 M. Tofte and J.-P. Talpin. Region-based memory management. Inf. Comput., 132(2):
109–176, Feb. 1997. ISSN 0890-5401. doi: 10.1006/inco.1996.2613.

41 M. Tofte, L. Birkedal, M. Elsman, N. Hallenberg, and P. Sestoft. Programming with
regions in the ml kit (for version 4). 10 2001.

42 A. Xhebraj, O. Bračevac, G. Wei, and T. Rompf. What If We Don’t Pop the Stack? The
Return of 2nd-Class Values. In K. Ali and J. Vitek, editors, 36th European Conference
on Object-Oriented Programming (ECOOP 2022), volume 222 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 15:1–15:29, Dagstuhl, Germany, 2022. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik. ISBN 978-3-95977-225-9. doi: 10.4230/
LIPIcs.ECOOP.2022.15.

43 N. Xie and D. Leijen. Generalized evidence passing for effect handlers: Efficient com-

TR 2023

https://doi.org/10.1145/3331545.3342595
https://doi.org/10.1145/3453483.3454039
https://doi.org/10.1145/3453483.3454039

32 REFERENCES

pilation of effect handlers to c. Proc. ACM Program. Lang., 5(ICFP), aug 2021. doi:
10.1145/3473576. URL https://doi.org/10.1145/3473576.

44 N. Xie, J. I. Brachthäuser, D. Hillerström, P. Schuster, and D. Leijen. Effect handlers,
evidently. Proc. ACM Program. Lang., 4(ICFP), Aug. 2020. doi: 10.1145/3408981.

45 Y. Zhang and A. C. Myers. Abstraction-safe effect handlers via tunneling. Proc. ACM
Program. Lang., 3(POPL):5:1–5:29, Jan. 2019. ISSN 2475-1421. doi: 10.1145/3290318.

https://doi.org/10.1145/3473576

33

A Proofs for Lift-Inference Translation from System Ξ to Λcap

In this appendix, we give the proofs of typability and semantics preservation for the lift-
inference translation. We use pri for the i-th projection on a pair.

A.1 Typability Preservation
We start with typability preservation. First, we prove preservation of the soundness of lifting
environments (Lemma 5).

▶ Lemma 8 (Soundness of Environments for the Lift-Inference Translation).
All adaptions of lifting environments made by the lift-inference translation take sound
environments to sound environments.

Proof. By case distinction. There are three cases where the environment is changed in the
translation.

case Def
Given a sound environment E = { ρ, ∆, m, ΓE }, we have to show that

E′ := E, f 7→ (RJ b KE CJ b KE)
= { ρ, (∆, f), (m, f 7→ (RJ b KE CJ b KE)), ΓE }

is sound, too.
For g ∈ dom(∆) we have RJ g KE′

= pr1(m(g)) = RJ g KE (we assume all bindings to be
distinct) and similarly CJ g KE′

= pr2(m(g)) = CJ g KE and hence

ΓE ⊢ CJ g KE′
: ρ ⊑ RJ g KE′

by soundness of E.
For f note that by typing we either have b = g for some g ∈ dom(∆) or b = w. In the first
case the same reasoning as above applies. In the second case we have RJ f KE′

= RJ w KE = ρ

and similarly CJ f KE′
= 0 and thus

ΓE ⊢ CJ f KE′
: ρ ⊑ RJ f KE′

by rule Reflexive.

case Try
Given a sound environment E = { ρ, ∆, m, ΓE }, we have to show that

E′ := E ⊕ n, c 7→ (r 0)
= { r , (∆, c), (m ⊕ n, c 7→ (r 0)), (ΓE , r , n : r ⊑ ρ) }

E′′ := E, k 7→ (ρ 0)
= { ρ, (∆, k), (m, k 7→ (ρ 0)), ΓE }

are sound.
First consider E′. Note that ΓE , r , n : r ⊑ ρ ⊢ 0 : r ⊑ r by rule Reflexive which is
what we need for c.
For f ∈ dom(∆) we have RJ f KE′

= pr1((m ⊕ n)(f)) = pr1(m(f)) = RJ f KE and
CJ f KE′

= pr2((m ⊕ n)(f)) = n ⊕ CJ f KE. By soundness of E (and weakening) we have

ΓE , r , n : r ⊑ ρ ⊢ CJ f KE : ρ ⊑ RJ f KE′

TR 2023

34

and rule EviVar yields
ΓE , r , n : r ⊑ ρ ⊢ n : r ⊑ ρ

Hence, we can apply rule Transitive to obtain

ΓE , r , n : r ⊑ ρ ⊢ n ⊕ CJ f KE : r ⊑ RJ f KE′

Now consider E′′. For k, rule Reflexive yields ΓE ⊢ 0 : ρ ⊑ ρ.
For g ∈ dom(∆) we have RJ g KE′′

= pr1(m(g)) = RJ g KE and similarly CJ g KE′′
= CJ g KE

and hence
ΓE ⊢ CJ g KE′′

: ρ ⊑ RJ g KE′′

by soundness of E.

case Block
Given a sound environment E = { ρ, ∆, m, ΓE }, we have to show that

E′ := E ⊕ n, f 7→ (rf nf), rf , nf : r ⊑ rf
= { r , (∆, f), (m ⊕ n, f 7→ (rf nf)), (ΓE , r , n : r ⊑ ρ, rf , nf : r ⊑ rf) }

is sound. For the f we have RJ f KE′
= rf and CJ f KE′

= nf , hence rule EviVar gives us

ΓE , r , n : r ⊑ ρ, rf , nf : r ⊑ rf ⊢ CJ f KE′
: r ⊑ RJ f KE′

For g ∈ dom(∆) we have RJ g KE′
= pr1((m ⊕ n)(g)) = pr1(m(g)) = RJ g KE and

CJ g KE′
= pr2((m ⊕ n)(g)) = n ⊕ CJ g KE. By soundness of E (and weakening) we have

ΓE , r , n : r ⊑ ρ, rf , nf : r ⊑ rf ⊢ CJ g KE : ρ ⊑ RJ g KE′

and rule EviVar yields

ΓE , r , n : r ⊑ ρ, rf , nf : r ⊑ rf ⊢ n : r ⊑ ρ

Hence, we can apply rule Transitive to obtain

ΓE , r , n : r ⊑ ρ, rf , nf : r ⊑ rf ⊢ n ⊕ CJ g KE : r ⊑ RJ g KE′

◀

Now we prove typability preservation for the lift-inference translation (Theorem 6).

▶ Theorem 9 (Typability Preservation for the Lift-Inference Translation).
For E = { ρ, ∆, m, ΓE } sound,
if Γ ∆ ⊢ s : τ , then ΓE , Γ, T J ∆ KE

ρ ⊢ SJ s KE : τ ;
if Γ ∆ ⊢ b : σ, then ΓE , Γ, T J ∆ KE ⊢ BJ b KE : T J σ KRJ b KE ;
if Γ ⊢ v : τ , then ΓE , Γ ⊢ v : τ .

Proof. Induction over the typing derivation of the term in System Ξ. We make implicit use
of the structural rules.

case Lit
Immediate.

case Var

35

Given Γ ⊢ x : τ , we have Γ(x) = τ and hence ΓE , Γ ⊢ x : τ by rule Var.

case BlockVar
Given Γ ∆ ⊢ f : σ, we have ∆(f) = σ. Thus, T J ∆ KE(f) = T J σ KRJ f KE and

hence
ΓE , Γ, T J ∆ KE ⊢ f : T J σ KRJ f KE by rule Var.

case Block
Given Γ ∆ ⊢ { (x : τ , f : σ) ⇒ s0 } : (τ , σ) → τ0, we have Γ, x : τ ∆, f : σ ⊢ s0 : τ0.

We need to show that

ΓE , Γ, T J ∆ KE ⊢
{ [r , rf ; n : r ⊑ ρ, nf : r ⊑ rf](x : τ , f : T J σ Krf

) at r ⇒ SJ s0 KE′
} :

∀[r , rf ; r ⊑ ρ, r ⊑ rf] (τ , T J σ Krf
) →r τ0

where r , n, rf , nf are fresh and

E′ := E ⊕ n, f 7→ (rf nf), rf , nf : r ⊑ rf
= { r , (∆, f), (m ⊕ n, f 7→ (rf nf)), (ΓE , r , n : r ⊑ ρ, rf , nf : r ⊑ rf) }

To be able to invoke rule Fun we hence need

ΓE , Γ, T J ∆ KE
, r , rf , n : r ⊑ ρ, nf : r ⊑ rf , x : τ , f : T J σ Krf

r ⊢ SJ s0 KE′
: τ0

The assertion for statements instantiated with E′ (which is applicable since E′ is sound by
Lemma 5 and E′.∆ = ∆, f) gives us

ΓE , r , n : r ⊑ ρ, rf , nf : r ⊑ rf , Γ, x : τ , T J ∆ KE′
, f : T J σ KRJ f KE r ⊢ SJ s0 KE′

: τ0

But for g ∈ ∆ we have RJ g KE′
= pr1((m ⊕ n)(g)) = pr1(m(g)) = RJ g KE, hence, we

have
T J ∆ KE = T J ∆ KE′

. And since we also know that RJ f KE = rf , we have what we need.

case Val
Given Γ ∆ ⊢ val x = s0; s : τ , we have Γ ∆ ⊢ s0 : τ0 and Γ, x : τ0 ∆ ⊢ s : τ

for some τ0. By the induction hypothesis we have ΓE , Γ, T J ∆ KE
ρ ⊢ SJ s0 KE : τ0

and
ΓE , Γ, x : τ0, T J ∆ KE

ρ ⊢ SJ s KE : τ . Hence we obtain

ΓE , Γ, T J∆KE
ρ ⊢ SJs0K

E : τ0 ΓE , Γ, T J∆KE
, x : τ0 ρ ⊢ SJsKE : τ

Val
ΓE , Γ, T J∆KE

ρ ⊢ val x = SJs0K
E; SJsKE : τ

case Ret
Given Γ ∆ ⊢ return v : τ , we have Γ ⊢ v : τ . By the assertion for values we have

ΓE , Γ ⊢ v : τ . Hence we obtain

ΓE , Γ ⊢ v : τ
Ret

ΓE , Γ, T J∆KE
ρ ⊢ return v : τ

case Def

TR 2023

36

Given Γ ∆ ⊢ def f = b; s : τ , we have Γ ∆ ⊢ b : σ and Γ ∆, f : σ ⊢ s : τ

for some σ. By Lemma 5 we know that

E′ := E, f 7→ (RJ b KE CJ b KE)
= { ρ, (∆, f), (m, f 7→ (RJ b KE CJ b KE)), ΓE }

is sound. Using E′.∆ = ∆, f , we can use the assertion for blocks and instantiate the
induction hypothesis with E′ to obtain

ΓE , Γ, T J ∆ KE ⊢ BJ b KE : T J σ KRJ b KE and
ΓE , Γ, T J ∆ KE′

, f : T J σ KRJ f KE′ ρ ⊢ SJ s KE′
: τ

respectively. For g ∈ ∆ we have RJ g KE′
= pr1(m(g)) = RJ g KE and thus T J ∆ KE = T J ∆ KE′

.
Using RJ f KE′

= RJ b KE, we hence obtain

ΓE , Γ, T J∆KE⊢ BJbKE : T JσKRJbKE
Ret

ΓE , Γ, T J∆KE ρ⊢ return BJbKE : T JσKRJbKE ΓE , Γ, T J∆KE, f : T JσKRJbKE ρ⊢ SJsKE′
: τ
Val

ΓE , Γ, T J∆KE ρ ⊢ val f = return BJbKE; SJsKE′
: τ

case App
Given Γ ∆ ⊢ b0(v, b) : τ0, we have Γ ∆ ⊢ b0 : (τ , σ) → τ0, Γ ∆ ⊢ b : σ

and
Γ ⊢ v : τ for some τ , σ. The assertion for blocks gives us

ΓE , Γ, T J ∆ KE ⊢ BJ b0 KE : ∀[r , rf ; r ⊑ RJ b0 KE
, r ⊑ rf] (τ , T J σ Krf

) →r τ0

for r , rf fresh. We have to show that

ΓE , Γ, T J ∆ KE
ρ ⊢

BJ b0 KE[ρ, RJ b KE; CJ b0 KE
, CJ b KE](v, BJ b KE) : τ0

Note that there are no free region variables in τ0, so τ0 = τ0[sb], where sb .= r 7→ ρ, rf 7→ RJ b KE.
Similarly, we know that τ = τ [sb]. Moreover, we have ρ = r [r 7→ ρ] = r [sb]. And since
each rf is the only free region variable in each T J σ Krf

, respectively, we further find

T J σ KRJ b KE = T J σ Krf
[rf 7→ RJ b KE] = T J σ Krf

[sb]

The assertion for blocks and values thus gives us

ΓE , Γ, T J ∆ KE ⊢ BJ b KE : T J σ Krf
[sb] and ΓE , Γ, T J ∆ KE ⊢ v : τ [sb]

To satisfy the premises for rule App the only thing left to show is

ΓE , Γ, T J ∆ KE ⊢ CJ b KE : r ⊑ rf [sb] and
ΓE , Γ, T J ∆ KE ⊢ CJ b0 KE : r ⊑ RJ b0 KE[sb]

Since none of the r , rf can appear in RJ b0 KE we know that r ⊑ RJ b0 KE[sb] = ρ ⊑ RJ b0 KE

and we further have that r ⊑ rf [sb] = ρ ⊑ RJ b KE. Now, by typing, for each b′ ∈ b0, b
either b′ ∈ ∆ or b′ = w. But by assumption we know that E is sound, so

ΓE ⊢ CJ b′ KE : ρ ⊑ RJ b′ KE

37

for any b′ ∈ ∆. For the case b′ = w we have RJ b′ KE = ρ and CJ b′ KE = 0, so rule
Reflexive can be applied to yield the desired result.

case Do
Given Γ ∆ ⊢ do c(v) : τ2, we have Γ ∆ ⊢ c : Cap τ1 τ2 and Γ ⊢ v : τ1 for

some τ1. The assertion for blocks gives us ΓE , Γ, T J ∆ KE ⊢ c : Cap RJ c KE
τ1 τ2 and

the assertion for values yields ΓE , Γ ⊢ v : τ1. Since necessarily c ∈ ∆, the soundness of
E gives us

ΓE ⊢ CJ c KE : ρ ⊑ RJ c KE

Hence, we can apply rule Do to obtain

ΓE , Γ, T J ∆ KE
ρ ⊢ do c[CJ c KE](v) : τ2

case Try
Given Γ ∆ ⊢ try { (c) ⇒ s0 } with { (x, k) ⇒ s } : τ , we have Γ ∆, c : Cap τ1 τ2 ⊢ s0 : τ

and Γ, x : τ1 ∆, k : Cap τ2 τ ⊢ s : τ for some τ1, τ2. We need to show that

ΓE , Γ, T J ∆ KE
ρ ⊢

try { [r ; n : r ⊑ ρ](c) ⇒ SJ s0 KE′
} with { (x, k) ⇒ SJ s KE′′

} : τ

where r , n are fresh and

E′ := E ⊕ n, c 7→ (r 0)
= { r , (∆, c), (m ⊕ n, c 7→ (r 0)), (ΓE , r , n : r ⊑ ρ) }

E′′ := E, k 7→ (ρ 0)
= { ρ, (∆, k), (m, k 7→ (ρ 0)), ΓE }

To be able to invoke rule Try we thus need

ΓE , Γ, T J ∆ KE
, r , n : r ⊑ ρ, c : Cap r τ1 τ2 r ⊢ SJ s0 KE′

: τ

and
ΓE , Γ, T J ∆ KE

, x : τ1, k : Cap ρ τ2 τ ρ ⊢ SJ s KE′′
: τ

The induction hypothesis instantiated with E′ (which is applicable since E′ is sound by
Lemma 5 and E′.∆ = ∆, c) gives us

ΓE , r , n : r ⊑ ρ, Γ, T J ∆ KE′
, c : Cap RJ c KE′

τ1 τ2 r ⊢ SJ s0 KE′
: τ

and instantiated with E′′ (which is applicable since E′′ is sound by Lemma 5 and E′′.∆ = ∆, k)
we obtain

ΓE , Γ, x : τ1, T J ∆ KE′′
, k : Cap RJ k KE′′

τ2 τ ρ ⊢ SJ s KE′′
: τ

But note that we have

RJ g KE′
= pr1((m ⊕ n)(g))= pr1(m(g)) = RJ g KE

= RJ g KE′′

for all g ∈ ∆ and hence T J ∆ KE′
= T J ∆ KE′′

= T J ∆ KE. Moreover, we know that
RJ c KE′

= r and RJ k KE′′
= ρ. Thus, we have what we need.

◀

TR 2023

38

A.2 Semantics Preservation
Let us now sktech a proof of the evaluation theorem for the lift-inference translation (Theo-
rem 7).

▶ Theorem 10 (Evaluation for the Lift-Inference Translation).
If ∅ ∅ ⊢ s : τ and ⟨ s ∥ #start :: • ⟩ →n + k ⟨ return v || • ⟩,
then ⟨ SJ s K∅ ∥ #start :: • ⟩ →n + 2k ⟨ return v || • ⟩,
where k is the number of steps by rule def and n the number of other steps in System Ξ.

Proof Sketch. We give a sketch how a proof may proceed.

1. We define a calculus ΛEr
cap to be the same as Λcap but with all region and evidence

abstractions and applications omitted. We further define an erasure translation Er from
Λcap to ΛEr

cap which erases all regions and evidence.
2. As the regions and evidence are immaterial for the operational semantics in Λcap, the

machines of Λcap and ΛEr
cap proceed in lockstep. In particular, we have the following result:

For M1, if Er(M1) → M′2, there exists M2 such that M1 → M2 and Er(M′2) = M2.
3. As a corollary we obtain the following evaluation result:

If Er(⟨ s ∥ #start :: • ⟩) →n ⟨ return v ∥ • ⟩, then ⟨ s ∥ #start :: • ⟩ →n ⟨ return v ∥ • ⟩.
This follows from (1) by induction on n, using that Er(s′) = return v implies s′ = return v.

4. We can now compose the lift-inference translation with erasure to obtain a translation
J · KEr = Er ◦ J · K∅ from System Ξ to ΛEr

cap. Here we have used the empty lifting
environment, but as the regions and evidence are erased anyway, this does not matter.

5. Now, since the lift-inference translation only adds regions and evidence without altering
the constructs and structure otherwise and since the machine reductions in System Ξ are
identical to those in Λcap modulo the regions and evidence (and rule def), we obtain the
following simulation result for the composed translation:
If M1 → M2, then J M1 KEr →1, 2 J M2 KEr, where 2 steps are needed if the original step
is by rule def in which case the translated machine uses rule push immediately followed
by rule pop.

6. As a corollary we obtain the following evaluation result for the composed translation:
If ∅ ∅ ⊢ s : τ and ⟨ s ∥ #start :: • ⟩ →n + k ⟨ return v ∥ • ⟩,
then J ⟨ s ∥ #start :: • ⟩ KEr →n + 2k ⟨ return v ∥ • ⟩,
where k is the number of steps by rule def and n the number of other steps in System Ξ.

7. Now we can show the actual statement. Under the given assumptions, (4) and (6)
yield Er(⟨ SJ s K∅ ∥ #start :: • ⟩) →n + 2k ⟨ return v ∥ • ⟩. Hence, we can conclude the
desired result from (3).

◀

39

Syntax of Labels:

l ::= @a5f | @4b2 | ...

Additional Runtime Blocks:

b ::= ... | capl { (x, k) ⇒ s } | capl H | resume(H)

Syntax of Machine States:
M ::= ⟨ s ∥ K ⟩ executing

| ⟨ do b(v) ∥ K ∥ H ⟩ unwinding

Syntax of Frames:
F ::= val x = □; s

| resume(H) □

Syntax of Meta Stacks:

K ::= • | S :: K

Syntax of Resumptions:

H ::= • | S :: H

Syntax of Stacks:

S ::= #l | F :: S

Syntactic Sugar:

Sl
.= F :: #l

Figure 10 Syntax of the abstract machine for System Ξ and Λcap.

B CPS Translation from Λcap to System F

In this appendix, we give some more details on the operational semantics of Λcap and the
CPS translation from Λcap to System F.

B.1 Operational Semantics of Λcap

We first take a closer look at the machine semantics of Λcap. We define the operational
semantics of the two calculi in terms of an abstract machine. The operational semantics of
both languages is very similar. Therefore, we only show the machine for Λcap here and just
describe the few differences for System Ξ.

There are only two minor differences. First, there is an additional stepping rule for
function definition. Second, there are regions and evidence. However, both are irrelevant for
the machine semantics as it proceeds by searching delimiters with labels on the meta stack
and does not use region and evidence information. In the original version Brachthäuser et al.
[4] define the operational semantics for System Ξ using evaluation contexts. It is not difficult
to give an abstract machine formulation for their version (see e.g. [5] for how this is done for
an extension of System Ξ). As our version treats continuations as capabilities, we deviate a
bit from that abstract machine in how the handling of effect operations proceeds.

Syntax Figure 10 shows the syntax for our abstract machine. The machine uses labels
l freshly generated at runtime to implement multi-prompt delimited control [9]. During
execution the machine makes use of three additional runtime constructs. There are two kinds
of runtime capabilities capl { ... } and capl H, the former for handlers of effect operations
and the latter for continuations. Both of them carry a label. The one for effect operations
contains a handler implementation while the one for continuations contains a resumption.
The third construct resume(H) for resuming continuations also contains a resumption but
no label.

The machine has two different kinds of states. The executing state ⟨ s ∥ K ⟩ contains a
statement s in focus to be evaluated and a runtime meta stack K which is a list of delimited
stacks S. The unwinding state consists of a statement performing a capability, the meta stack
K and a resumption H. This state is for unwinding the meta stack and pushing stacks onto
the resumption. A resumption is thus also a list of stacks but in reverse order compared to the

TR 2023

40

Extended Syntax of Evidence and Regions.:

e ::= ... | w evidence value
ρ ::= ... | u runtime region

Evidence Values and Runtime Regions:

w ::= • | l : w evidence values
u ::= • | l : u runtime regions

Runtime Region of Meta Stack:

RJ · K : K → u
RJ • K = •
RJ Sl : K K = l : RJ K K

Normalization of Evidence:
N J · K : e → w
N J 0 K = •
N J e1 ⊕ e2 K = N J e1 K ++ N J e2 K
N J w K = w

Figure 11 Runtime regions and evidence.

meta stack. A stack is a list of frames ending with a delimiter #l containing a label l. This is
a minor technical difference to the original version of the language which treats delimiters as
regular frames and does not explicitly segment the meta stack into delimited stacks. Frames
are either sequencing frames val x = □; s or resumption frames resume(H) □. To ease the
presentation of the machine reduction steps a bit, we add some syntactic sugar for stacks:
we write Sl for a stack whose delimiter has label l.

Figure 11 shows the part of the runtime syntax specific for Λcap and the calculation of
runtime regions and evidence. Runtime regions and evidence both are lists of labels. The
runtime region of a meta stack is the list of all labels in the delimiters present on the meta
stack. Evidence is normalized to lists by using the empty list for trivial evidence and list
concatenation for evidence composition.

Typing Figure 12 shows the typing rules for the abstract machine. The corresponding rules
for System Ξ are almost identical, only the regions and evidence are dropped and the typing
environments have to be split into separate value and block environments.

The typing of resuming continuations and of continuation capabilities is essentially the
same, the only difference being that the label for the continuation capability is the topmost
label of the runtime region for the capability. This is also the case for handler capabilities,
but note how the region of the bound continuation variable does not contain this label.
The premises for typing handler capabilities are the same as those for the implementation
statement of a handler. Moreover, rule Evidence shows that runtime evidence is just the
prefix constituting the difference of the lists representing the runtime regions.

Typing of executing machine states shows that the type of the statement in focus must
be the type the meta stack expects. For unwinding states, the type of the statement must be
the input type of the resumption and the output type of the resumption must be the type
the meta stack expects. Moreover, the correct region is always given by the runtime region
of the meta stack.

For the typing of stacks, meta stacks and resumptions note that the region for a stack

41

Runtime Value Typing Γ ⊢ e : γ Γ ⊢ v : τ

u0 = w ++ u1

∅ ⊢ w : u0 ⊑ u1
[Evidence]

τ1 ρ ⊢ H : τ2

∅ ⊢ resume(H) : τ1 →ρ τ2
[Continuation]

Γ, x : τ1, k : Cap ρ τ2 τ u ⊢ s : τ

Γ ⊢ capl { (x, k) ⇒ s } : Cap (l :: ρ) τ1 τ2
[Capability]

τ1 l :: ρ ⊢ H : τ2

∅⊢ capl H : Cap (l :: ρ) τ1 τ2
[CapabilityK]

Abstract Machine Typing ⊢ M ok

∅ RJ K K ⊢ s : τ ⊢ K : τ

⊢ ⟨ s ∥ K ⟩ ok
[Machine]

∅ RJ K K ⊢ do v0[w](v) : τ2 ⊢ K : τ τ2 RJ K K ⊢ H : τ

⊢ ⟨ do v0[w](v) ∥ K ∥ H ⟩ ok
[Unwinding]

Meta Stack Typing ⊢ K : τ

⊢ • : τ
[Exit] τ l :: RJ K K ⊢ Sl : τ0 ⊢ K : τ0

⊢ Sl :: K : τ
[Stack]

Resumption Typing τ ρ ⊢ H : τ

τ ρ ⊢ • : τ
[Exit] τ1 l :: ρ ⊢ Sl : τ2 τ l :: ρ ⊢ H : τ1

τ ρ ⊢ Sl :: H : τ2
[Stack]

Stack Typing τ ρ ⊢ S : τ

τ l :: ρ ⊢ #l : τ
[Handler]

x : τ1 ρ ⊢ s : τ0 τ0 ρ ⊢ S : τ2

τ1 ρ ⊢ val x = □; s :: S : τ2
[Frame]

τ1 ρ ⊢ H : τ0 τ0 ρ ⊢ S : τ2

τ1 ρ ⊢ resume(H) □ :: S : τ2
[Resumption]

Figure 12 Typing of the abstract machine for Λcap.

delimited by label l always contains l as the topmost label. All frames of the stack are then
typed in that region. Each stack has an input type, which is the type of its hole, and an
output type, which is the overall type of its lowermost frame. In the typing of meta stacks
each stack must be typed in the region consisting of its label concatenated with the region of
the remaining stack. The output type of the stack must be the type the meta stack expects.
Resumptions are typed similarly, but since they contain stacks in reverse order the output
type is the output type of the topmost stack and the input type is the input type of the
lowermost stack. The region of the topmost stack and of the remaining resumption must
agree, with the label of the stack being the topmost label in the region. The rest of the
region stands for the region of the meta stack on top of which the resumption will run. This
is because the topmost stack will be the first to be pushed back onto the meta stack when
the resumption is actually used later. The whole resumption then can be typed without this
topmost label, as it is present in the resumption itself and thus does not have to be present
on the meta stack on top of which the resumption will run.

TR 2023

42

Machine Reductions:
Standard Machine Reductions
(app) ⟨ { [r ; n : γ](x : τ) at ρ ⇒ s }[ρ, e](v) ∥ K ⟩ → ⟨ s[r 7→ ρ, n 7→ e, x 7→ v] ∥ K ⟩
(push) ⟨ val x = s0; s ∥ S :: K ⟩ → ⟨ s0 ∥ (val x = □; s :: S) :: K ⟩
(pop) ⟨ return v ∥ (val x = □; s :: S) :: K ⟩ → ⟨ s[x 7→ v] ∥ S :: K ⟩
(res) ⟨ return v ∥ (resume(H) □ :: S) :: K ⟩ → ⟨ resume(H)(v) ∥ S :: K ⟩
(ret) ⟨ return v ∥ #l :: K ⟩ → ⟨ return v ∥ K ⟩

Installing Effect Handlers

(try) ⟨ try { [r ; n](c) ⇒ s0 } with { (x, k) ⇒ s } ∥ K ⟩ → ⟨ s0[r 7→ u, n 7→ w, c 7→ v] ∥ #l :: K ⟩
where l = generateFresh() and v = capl { (x, k) ⇒ s }
and u = l :: RJ K K and w = l :: •

Handling Effect Operations

(perform) ⟨ do (capl h)[e](v) ∥ K ⟩ → ⟨ do (capl h)[N JeK](v) ∥ K ∥ • ⟩

(unwind) ⟨ do (capl h)[l ′ :: w](v) ∥ Sl′ :: K ∥ H ⟩ →
⟨ do (capl h)[w](v) ∥ K ∥ Sl′ :: H ⟩ where l ̸= l ′

(handle) ⟨ do (capl { (x, k) ⇒ s })[•](v) ∥ Sl :: S′
l′ :: K ∥ H ⟩ → ⟨ s[x 7→ v, k 7→ j] ∥ S′

l′ :: K ⟩
where j = capl′ (Sl :: H)

(rewindK) ⟨ do (capl H′)[•](v) ∥ Sl :: K ∥ S :: H ⟩ →
⟨ do (capl H′)[•](v) ∥ (resume(S :: H) □ :: Sl) :: K ∥ • ⟩

(handleK) ⟨ do (capl H)[•](v) ∥ Sl :: K ∥ • ⟩ → ⟨ resume(H)(v) ∥ Sl :: K ⟩

(rewind) ⟨ resume(S :: S′ :: H)(v) ∥ K ⟩ → ⟨ resume(S′ :: H)(v) ∥ S :: K ⟩
(resume-1)⟨ resume((val x = □; s :: S) :: •)(v) ∥ K ⟩ → ⟨ s [x 7→ v] ∥ S :: K ⟩
(resume-2)⟨ resume((resume(H) □ :: S) :: •)(v) ∥ K ⟩ → ⟨ resume(H)(v) ∥ S :: K ⟩
(resume-3)⟨ resume(#l :: •)(v) ∥ K ⟩ → ⟨ return v ∥ K ⟩

Figure 13 Steps of the abstract machine for Λcap.

Reduction steps The reduction steps for the machine are given in Figure 13. Execution
of a closed statement s always starts with a delimiter with a special toplevel label on the
otherwise empty meta stack, that is, in state ⟨ s ∥ #start :: • ⟩.

Many of the rules are standard. The additional rule def in System Ξ for function
definitions reads

(def) ⟨ def f = w; s ∥ K ⟩ → ⟨ s[f 7→ w] ∥ K ⟩

The newly defined block is substituted in the remaining statement. Similarly, in rule app the
arguments of the function block are substituted in its body. Rule push focuses on the first
statement and pushes a sequencing frame onto the topmost stack. When returning a value
to such a frame (rule pop), execution goes on with the statement in that frame. Similarly,
when returning to a resumption frame (rule res), execution continues with that resumption
block. Returning to a stack that only consists of a delimiter at the end (rule ret) simply
pops that delimiter and execution goes on with returning to the next stack. Upon execution
of a handler statement (rule try) a fresh label is generated and a new stack consisting only of
a delimiter with that label is pushed onto the meta stack. Execution then continues with the
handled statement where the abstracted capability variable is replaced by a runtime handler
capability with the just generated label l and the handler implementation.

When encountering a call to a capability, rule perform transitions to unwinding mode.
Rule unwind then pops stacks off the meta stack and pushes them onto the resumption

43

until the stack Sl ending with the delimiter with the correct label is found. Note how the
labels in the evidence for capabilities precisely match the labels on the meta stack when
unwinding. The rules so far are essentially the same as for the original version of Λcap. Now,
in the original version rule handle would proceed by substituting the block resume(Sl :: H)
for the continuation variable k in the handler statement s. However, we treat continuations
as capabilities, so we instead substitute capl′ (Sl :: H) where l ′ is the label of the delimiter
of the next stack. This is the reason why we start execution with a toplevel delimiter, so
that there always is a next stack. When encountering such a continuation capability, the
machine again goes into unwinding mode as described before, but when the stack with the
correct label is found, the collected resumption is pushed as a resumption frame onto that
stack (rule rewindK). Rule handleK then transitions back to execution mode turning the
continuation capability into a resumption block as its label is not needed anymore.

At this point the machine is in almost the same state as it would be in the original version.
The only difference is that the part of the meta stack which in the original version would
be on top of the stack Sl , where l is the correct label for the continuation, now is packaged
into a resumption frame at the beginning of Sl . Such a resumption frame acts a bit like an
“underflow” frame [10] when returning to it, in the sense that execution then first continues
with that resumption (see rule res). When unwinding, however, it is treated just as another
ordinary frame. Hence, when a call to a capability inside the continuation is encountered, it
only sees the labels present on the meta stack when the continuation was created so that its
evidence is correct. This difference in how continuations are treated compared to the original
version of Λcap hence does not impact the final result of the execution for all programs that
could be written in the original version.

Reduction of a resumption block proceeds by first rewinding the stacks in the resumption
onto the meta stack (rule rewind), and then returning to the last stack in the resumption
(with cutting one return step short, see rules resume-1, resume-2, resume-3).

B.2 CPS Translation
Figure 14 shows the CPS translation from Λcap to System F for the syntax and typing. It is
defined over typing derivations but we abbreviate them by only writing the term. As noted
before, the only difference compared to the original version of Λcap is that we distinguish
handler and continuation capabilities and η-expand in the translation of the latter.

TR 2023

44

Translation of Types:

T J Int K = Int

T J ∀[r , γ](τ) →ρ τ0 K = ∀r . T J γ K → T J τ K → Cps T J ρ K T J τ0 K

T J Cap ρ τ1 τ2 K = T J τ1 K → Cps T J ρ K T J τ2 K

T J r K = r

T J ⊤K = Void

T J ρ ⊑ ρ′ K = ∀a. Cps T J ρ′ K a → Cps T J ρ K a

Translation of Values:
VJ x K = x

VJ 1 K = 1

VJ { [r , n : γ](x : τ) at ρ ⇒ s } K = Λr . λn. λx. SJ s K

Translation of Evidence:
EJ n K = n

EJ 0 K = Λa. E ′J 0 Ka

EJ e1 ⊕ e2 K = Λa. E ′J e1 ⊕ e2 Ka

E ′J 0 Ka = λm. m

E ′J e1 ⊕ e2 Ka = λm. EJ e1 K a (EJ e2 K a m)

Translation of Statements:
SJ return v K = λk. k (VJ v K)

SJ val x = s0; s K = λk. SJ s0 K (λx. SJ s K k)

SJ v[ρ, e](v) K = VJ v K T J ρ K EJ e K VJ v K

SJ do v0[e](v) K = EJ e K T J τ2 K (VJ v0 K VJ v K)

SJ do k[e](v) K = EJ e K T J τ2 K (λk0. VJ k K VJ v K k0)

SJ try { [r ; n](c) ⇒ s0 } with { (x, k) ⇒ s } K = Reset ((Λr . λn. λc. SJ s0 K)
(Cps T J ρ K T J τ K) (Lift) (λx. λk. SJ s K))

Auxiliary Definitions:

Cps R A = (A → R) → R

Reset : Cps (Cps R A) A → Cps R A
Reset m = m (λx. λk. k x)

Lift : ∀a. Cps R a → Cps (Cps R R′) a
Lift = Λa. λm. λk. λj. m (λx. k x j)

Figure 14 CPS Translation from Λcap to System F.

45

Syntax of System F:

Terms
t ::= x | λx. t | Λa. t | t t | t τ | done
Contexts
A ::= □ v | let κ = v in □
C ::= • | A :: C

Plugging
Plug(t, •) = t
Plug(t, □ v :: C) = Plug(t v, C)
Plug(t, let κ = v in □ :: C) = Plug(t [κ 7→ v], C)

Translation of Machine States:
MJ ⟨ s ∥ K ⟩ K = Plug(SJ s K , □ κ :: KJ K K)
MJ ⟨ do capl { (x, k) ⇒ s }[w](v) ∥ K ∥ H ⟩ K =

Plug(WJ w K(λk. SJ s K)[x 7→ VJ v K]), □ HJ H K :: KJ K K)
MJ ⟨ do capl (S :: H′)[w](v) ∥ K ∥ H ⟩ K =

Plug(WJ w K(λk. HJ H′ K [κ 7→ GJ S K] VJ v K k), □ HJ H K :: KJ K K)
MJ ⟨ do capl (•)[w](v) ∥ K ∥ H ⟩ K = dummy(does not occur)

Translation of Meta Stacks:
KJ • K = let κ = done in □ :: •
KJ S :: K K = FJ S K :: KJ K K

Translation of Resumptions:

HJ • K = κ

HJ S :: H K = λx0. HJ H K [κ 7→ GJ S K] x0 κ

Translation of Stacks:
FJ #l K = let κ = λx. λk. k x in □ :: □ κ

FJ val x = □; s :: S K = let κ = λx. SJ s K κ in □ :: FJ S K
FJ resume(H) □ :: S K = let κ = HJ H K in □ :: FJ S K

GJ #l K = λx. λk. k x
GJ val x = □; s :: S K = λx. SJ s K GJ S K
GJ resume(H) □ :: S K = HJ H K [κ 7→ GJ S K]

Translation of Unwinding:

WJ • Kt = t
WJ l :: w Kt = λk. λj. WJ w Kt (λx. k x j)

Translation of Evidence Values:
EJ w K = Λa. E ′J w Ka
E ′J w Ka = λm. WJ w Km

Translation of Runtime Regions:

T J • K = Void
T J l :: ρ K = Cps T J ρ K T J τ K where l is delimited at τ

Translation of Runtime Values:
VJ capl { (x, k) ⇒ s } K = λx. λk. SJ s K
VJ resume(S :: H) K = HJ H K [κ 7→ GJ S K]
VJ resume(•) K = dummy(does not occur)
VJ capl (S :: H) K = HJ H K [κ 7→ GJ S K]
VJ capl (•) K = dummy(does not occur)

Figure 15 Translation of machine states.

TR 2023

46

Translation of runtime constructs Figure 15 shows the translation of the runtime constructs
for the abstract machine. This is necessary to prove the simulation theorem. It is again
similar to the original translation in [36] but differs in several regards. The syntax for
System F and the auxiliary contexts and plugging are the same. In the translation of machine
states, however, we have an additional case for continuation capabilities for the unwinding
state. Here, the η-expansion mentioned above is again visible. Moreover, we use that the
resumption can never be empty. The translation of stacks, meta stacks and resumptions is a
bit different as meta stacks are explicitly partitioned, but the essence is still the same. Note
that the translation of a resumption always contains κ free exactly once. The translation of
stacks has two versions, one uses auxiliary contexts, the other one has the plugging done
already. In the translation of runtime values there now additionally is a case for continuation
capabilities. Note that its translation is exactly the same as for resuming continuations,
because the label does not matter for the CPS translation.

B.3 Proofs for the CPS Translation

B.3.1 Semantics Preservation
Now we prove the simulation theorem for the CPS translation from Λcap to System F. We
first state and prove several lemmas we need.

▶ Lemma 11 (Subst).
SJ s K [r 7→ T J ρ K] = SJ s [r 7→ ρ] K
SJ s K [n 7→ EJ e K] = SJ s [n 7→ e] K
SJ s K [x 7→ VJ v K] = SJ s [x 7→ v] K

Proof. The only change compared to the original system is in the translation of the call of
continuations. But that case is essentially the same as the one for calling a capability. Hence,
the original proof carries over almost unchanged. ◀

▶ Lemma 12 (Perform).
If e does not contain variables, then E ′J e Ka v →∗ WJ N J e K Kv

Proof. Still exactly the same as the original version. ◀

▶ Lemma 13 (PlugRed).
If t → t′ then Plug(t, C) → Plug(t′, C)

Proof. Still exactly the same as the original version. ◀

▶ Lemma 14 (PlugSeg).
Plug(t, A :: FJ S K :: C) = Plug(t, A :: let κ = GJ S K in □ :: □ κ :: C)

Proof. By definition of Plug there exists t′ such that Plug(t, A :: C) = Plug(t′, C).
Thus, we can assume A to be empty without loss of generality. We prove by induction on S.

case S = #l
Plug(t, FJ #l K :: C) =
Plug(t, let κ = λx. λk. k x in □ :: □ κ :: C) =
Plug(t, let κ = GJ • K in □ :: □ κ :: C)

case S = F :: S′

47

We distinguish cases for F.
For F = val x = □; s we have

Plug(t, FJ val x = □; s :: S′ K :: C) =
Plug(t, let κ = λx. SJ s K κ in □ :: FJ S′ K :: C) =
Plug(t [κ 7→ λx. SJ s K κ], FJ S′ K :: C) =
Plug(t [κ 7→ λx. SJ s K κ], let κ = GJ S′ K in □ :: □ κ :: C) =
Plug(t [κ 7→ λx. SJ s K GJ S′ K], □ κ :: C) =
Plug(t, let κ = λx. SJ s K GJ S′ K in □ :: □ κ :: C) =
Plug(t, let κ = GJ val x = □; s :: S′ K in □ :: □ κ :: C)

Here we have used that κ occurs free at most once on the left-hand side.
For F = resume(H) □ we have

Plug(t, FJ resume(H) □ :: S′ K :: C) =
Plug(t, let κ = HJ H K in □ :: FJ S′ K :: C) =
Plug(t [κ 7→ HJ H K], FJ S′ K :: C) =
Plug(t [κ 7→ HJ H K], let κ = GJ S′ K in □ :: □ κ :: C) =
Plug(t [κ 7→ HJ H K [κ 7→ GJ S′ K]], □ κ :: C) =
Plug(t, let κ = HJ H K [κ 7→ GJ S′ K] in □ :: □ κ :: C) =
Plug(t, let κ = GJ resume(H) □ :: S′ K in □ :: □ κ :: C)

Here we have used that κ occurs free at most once on the left-hand side and does so in
HJ H K.

◀

▶ Lemma 15 (ResumpSubst).
HJ H K [κ 7→ GJ S K] always is a value and GJ S K always is a value.

Proof. We prove both parts simultaneously. For the first part we use induction over H.

case H = •
We have HJ • K [κ 7→ GJ S K] = GJ S K, so the claim follows from the second part.

case H = S′ :: H′

We have HJ S′ :: H′ K [κ 7→ GJ S K] = λx0. HJ H′ K [κ 7→ GJ S′ K] x0 GJ S K, which is a
λ-abstraction and thus a value. Here we have used that κ does not occur free in GJ S′ K.

For the second part we use induction over S.

case S = #l
We have GJ #l K = λx. λk. k x, which is a λ-abstraction and thus a value.

case S = F :: S′

We distinguish cases for F.
For F = val x = □; s, we have GJ val x = □; s :: S′ K = λx. SJ s K GJ S′ K, which

is a λ-abstraction and thus a value.
For F = resume(H) □, we have GJ resume(H) □ ::: S′ K = HJ H K [κ 7→ GJ S′ K], which

is a value by the first part.

◀

TR 2023

48

▶ Lemma 16 (Resume).

MJ ⟨ resume(S :: H)(v) ∥ K ⟩ K =

Plug(HJ H K [κ 7→ GJ S K] VJ v K, □ κ :: KJ K K)

Proof.

MJ ⟨ resume(S :: H)(v) ∥ K ⟩ K = by Def MJ · K

Plug(SJ resume(S :: H)(v) K, □ κ :: KJ K K) = by Def SJ · K

Plug(VJ resume(S :: H)K VJ v K, □ κ :: KJ K K) = by Def VJ · K

Plug(HJ H K [κ 7→ GJ S K] VJ v K, □ κ :: KJ K K)

◀

We are now ready to give a proof for the simulation theorem (Theorem 1).

▶ Theorem 17 (Simulation for the CPS Translation).
If ⊢ M ok and M → M′, then MJ M K →∗ MJ M′ K.

Proof. The proof proceeds by case distinction on the stepping relation of the machine. We
use Lemma PlugRed in most cases to reduce inside Plug. Moreover, we use that κ occurs
free at most once on the left-hand side in Plug and thus is always substituted only in one
place.

case app

MJ ⟨ { [r ; n : γ](x : τ) at ρ ⇒ s0 }[ρ, e](v) ∥ K ⟩ K = by Def MJ · K

Plug(SJ { [r ; n : γ](x : τ) at ρ ⇒ s0 }[ρ, e](v) K, □ κ :: KJ K K) = by Def SJ · K

Plug(VJ { [r ; n : γ](x : τ) at ρ ⇒ s0 } K T J ρ K EJ e K VJ v K, □ κ :: KJ K K) = by Def VJ · K

Plug((Λr . λn. λx. SJ s0 K) T J ρ K EJ e K VJ v K, □ κ :: KJ K K) →3 by β-reduction

Plug(SJ s0 K [r 7→ T J ρ K n 7→ EJ e K x 7→ VJ v K], □ κ :: KJ K K) = by Lemma Subst

Plug(SJ s0 [r 7→ ρ n 7→ e x 7→ v] K, □ κ :: KJ K K) = by Def MJ · K

MJ ⟨ s0[r 7→ ρ, n 7→ e, x 7→ v] ∥ K ⟩ K

case push

49

MJ ⟨ val x = s0; s ∥ S :: K ⟩ K = by Def MJ · K

Plug(SJ val x = s0; s K, □ κ :: KJ S :: K K) = by Def SJ · K

Plug(λk. SJ s0 K (λx. SJ s K k), □ κ :: KJ S :: K K) = by Def Plug

Plug((λk. SJ s0 K (λx. SJ s K k)) κ, KJ S :: K K) → by β-reduction

Plug(SJ s0 K (λx. SJ s K κ), KJ S :: K K) = by Def Plug

Plug(SJ s0 K, □ κ :: let κ = λx. SJ s K κ in □ :: KJ S :: K K) = by Defs KJ · K, FJ · K

Plug(SJ s0 K, □ κ :: KJ (val x = □; s :: S) :: K K) = by Def MJ · K

MJ ⟨ s0 ∥ (val x = □; s :: S) :: K ⟩ K

Here we have used that k is fresh.

case pop

MJ ⟨ return v ∥ (val x = □; s :: S) :: K ⟩ K = by Def MJ · K

Plug(SJ return v K, □ κ :: KJ (val x = □; s :: S) :: K K) = by Def SJ · K

Plug(λk. k VJ v K, □ κ :: KJ (val x = □; s :: S) :: K K) = by Defs KJ · K, FJ · K

Plug(λk. k VJ v K, □ κ :: let κ = λx. SJ s K κ in □ :: KJ S :: K K) = by Def Plug

Plug((λk. k VJ v K) (λx. SJ s K κ), KJ S :: K K) → by β-reduction

Plug((λx. SJ s K κ) VJ v K, KJ S :: K K) → by β-reduction

Plug(SJ s K [x 7→ VJ v K] κ, KJ S :: K K) = by Def Plug

Plug(SJ s K [x 7→ VJ v K], □ κ :: KJ S :: K K) = by Lemma Subst

Plug(SJ s [x 7→ v] K, □ κ :: KJ S :: K K) = by Def MJ · K

MJ ⟨ s[x 7→ v] ∥ S :: K ⟩ K

Here we have used that k is fresh and x only occurs free in s.

case res

TR 2023

50

MJ ⟨ return v ∥ (resume(S′ :: H) □ :: S) :: K ⟩ K = by Def MJ · K

Plug(SJ return v K, □ κ :: KJ (resume(S′ :: H) □ :: S) :: K K) = by Def SJ · K

Plug(λk. k VJ v K, □ κ :: KJ (resume(S′ :: H) □ :: S) :: K K) = by Defs KJ · K, FJ · K

Plug(λk. k VJ v K,
□ κ :: let κ = HJ S′ :: H K in □ :: KJ S :: K K) = by Def Plug

Plug((λk. k VJ v K) HJ S′ :: H K, KJ S :: K K) → by β-reduction

Plug(HJ S′ :: H K VJ v K, KJ S :: K K) = by Def HJ · K

Plug((λx0. HJ H K [κ 7→ GJ S′ K] x0 κ) VJ v K, KJ S :: K K) → by β-reduction

Plug(HJ H K [κ 7→ GJ S′ K] VJ v K κ, KJ S :: K K) = by Def Plug

Plug(HJ H K [κ 7→ GJ S′ K] VJ v K, □ κ :: KJ S :: K K) = by Lemma Resume

MJ ⟨ resume(S′ :: H)(v) ∥ S :: K ⟩ K

Here we have used that x0 is fresh.

case ret
MJ ⟨ return v ∥ #l :: K ⟩ K = by Def MJ · K

Plug(SJ return v K, □ κ :: KJ #l :: K K) = by Def SJ · K

Plug(λk. k VJ v K, □ κ :: KJ #l :: K K) = by Defs KJ · K, FJ · K

Plug(λk. k VJ v K, □ κ :: let κ = λx1. λk1. k1 x1 in □ :: □ κ :: KJ K K) = by Def Plug

Plug((λk. k VJ v K) (λx1. λk1. k1 x1), □ κ :: KJ K K) → by β-reduction

Plug((λx1. λk1. k1 x1) VJ v K, □ κ :: KJ K K) → by β-reduction

Plug(λk1. k1 VJ v K, □ κ :: KJ K K) = by Def SJ · K

Plug(SJ return v K, □ κ :: KJ K K) = by Def MJ · K

MJ ⟨ return v ∥ K ⟩ K

Here we have used that k is fresh.

51

case try
In the following we have ρ = RJ K K, u = l :: ρ, w = l :: • and v = capl { (x, k) ⇒ s }.

We use T J u K = Cps T J ρ K T J τ K where τ is the type of the statement, EJ w K = Lift
and VJ v K = λx. λk. SJ s K. Hence we have

MJ ⟨ try { [r ; n](c) ⇒ s0 } with { (x, k) ⇒ s } ∥ K ⟩ K = by Def MJ · K

Plug(SJ try { [r ; n](c) ⇒ s0 } with { (x, k) ⇒ s } K, □ κ :: KJ K K) = by Def SJ · K

Plug(Reset((Λr . λn. λc. SJ s0 K) (Cps T J ρ K T J τ K) Lift (λx. λk. SJ s K)),
□ κ :: KJ K K) = by above

Plug(Reset((Λr . λn. λc. SJ s0 K) T J u K EJ w K VJ v K),
□ κ :: KJ K K) = by Def Reset

Plug(((Λr . λn. λc. SJ s0 K) T J u K EJ w K VJ v K) (λx1. λk1. k1 x1),
□ κ :: KJ K K) →3 by β-reduction

Plug((SJ s0 K [r 7→ T J u K, n 7→ EJ w K, c 7→ VJ v K]) (λx1. λk1. k1 x1),
□ κ :: KJ K K) = by Def Plug

Plug(SJ s0 K [r 7→ T J u K, n 7→ EJ w K, c 7→ VJ v K],
□ κ :: let κ = λx1. λk1. k1 x1 in □ :: □ κ :: KJ K K) = by Defs KJ · K, FJ · K

Plug(SJ s0 K [r 7→ T J u K, n 7→ EJ w K, c 7→ VJ v K],
□ κ :: KJ #l :: K K) = by Lemma Subst

Plug(SJ s0[r 7→ u, n 7→ w, c 7→ v] K, □ κ :: KJ #l :: K K) = by Def MJ · K

MJ ⟨ s0[r 7→ u, n 7→ w, c 7→ v] ∥ #l :: K ⟩ K

case perform
There are two cases to consider, one for capl { (x, k) ⇒ s } and one for capl (S :: H).

Both cases are very similar, so for the common steps we simply write capl h and correspond-
ingly t in the translated term. Then we have

MJ ⟨ do (capl h)[e](v) ∥ K ⟩ K = by Def MJ · K

Plug(SJ do (capl h)[e](v) K, □ κ :: KJ K K) = by Def SJ · K

Plug(EJ e K T J τ2 K t, □ κ :: KJ K K) = by Def EJ · K

Plug((Λa. E ′J e Ka) T J τ2 K t, □ κ :: KJ K K) → by β-reduction

Plug(E ′J e KT J τ2 K t, □ κ :: KJ K K)

Now for the case where h = { (x, k) ⇒ s } we have

t = VJ capl h K VJ v K = (λx. λk. SJ s K) VJ v K

TR 2023

52

and obtain

Plug(E ′J e KT J τ2 K ((λx. λk. SJ s K) VJ v K), □ κ :: KJ K K) → by β-reduction

Plug(E ′J e KT J τ2 K ((λk. SJ s K) [x 7→ VJ v K]), □ κ :: KJ K K)

Here we have used that E ′J e Ka always is a value. For the case where h = S :: H we have

t = λk. VJ capl h K VJ v K k = λk. HJ H K [κ 7→ GJ S K] VJ v K k

Hence, in either case we now have an application of E ′J e KT J τ2 K to a value for which we
write v0. We use that e cannot contain variables so that we can use Lemma Perform and
obtain

Plug(E ′J e KT J τ2 K v0, □ κ :: KJ K K) →∗ by Lemma Perform

Plug(WJ N J e K Kv0
, □ κ :: KJ K K) = by Def HJ · K

Plug(WJ N J e K Kv0
, □ HJ • K :: KJ K K) = by Def MJ · K

MJ ⟨ do (capl h)[N J e K](v) ∥ K ∥ • ⟩ K

case unwind
There are two cases to consider one for capl { (x, k) ⇒ s } and one for capl H. But both

cases proceed in exactly the same way and we again simply write capl h and correspondingly
t in the translated term.

MJ ⟨ do (capl h)[l ′ :: w](v) ∥ Sl′ :: K ∥ H ⟩ K = by Def MJ · K

Plug(WJ l ′ :: w Kt , □ HJ H K :: KJ Sl′ :: K K) = by Def WJ · K

Plug(λk. λj. WJ w Kt (λx. k x j), □ HJ H K :: KJ Sl′ :: K K) = by Def KJ · K

Plug(λk. λj. WJ w Kt (λx. k x j), □ HJ H K :: FJ Sl′ K :: KJ K K) = by Lemma PlugSeg

Plug(λk. λj. WJ w Kt (λx. k x j),
□ HJ H K :: let κ = GJ Sl′ K in □ :: □ κ :: KJ K K) = by Def Plug

Plug(((λk. λj. WJ w Kt (λx. k x j)) HJ H K [κ 7→ GJ Sl′ K]) κ, KJ K K) →2 by β-reduction

Plug(WJ w Kt (λx. HJ H K [κ 7→ GJ Sl′ K] x κ), KJ K K) = by Def HJ · K

Plug(WJ w Kt , HJ Sl′ :: H K, KJ K K) = by Def Plug

Plug(WJ w Kt , □ HJ Sl′ :: H K :: KJ K K) = by Def MJ · K

MJ ⟨ do (capl h)[w](v) ∥ K ∥ Sl′ :: H ⟩ K

Here we have used that k, j are fresh, that κ occurs free in HJ H K and that HJ H K [κ 7→ GJ Sl′ K]
always is a value by Lemma ResumpSubst.

case handle

53

MJ ⟨ do capl { (x, k) ⇒ s }[•](v) ∥ Sl :: Sl′ :: K ∥ H ⟩ K = by Def MJ · K

Plug(WJ • K((λk. SJ s K)[x 7→ VJ v K]), □ HJ H K :: KJ Sl :: Sl′ :: K K) = by Def WJ · K

Plug((λk. SJ s K)[x 7→ VJ v K], □ HJ H K :: KJ Sl :: Sl′ :: K K) = by Def KJ · K

Plug((λk. SJ s K)[x 7→ VJ v K], □ HJ H K :: FJ Sl K :: KJ Sl′ :: K K) = by Lemma PlugSeg

Plug((λk. SJ s K)[x 7→ VJ v K],
□ HJ H K :: let κ = GJ Sl K in □ :: □ κ :: KJ Sl′ :: K K) = by Def Plug

Plug(((λk. SJ s K)[x 7→ VJ v K]) HJ H K [κ 7→ GJ Sl K],
□ κ :: KJ Sl′ :: K K) → by Def VJ · K

Plug(((λk. SJ s K)[x 7→ VJ v K]) VJ capl′ (Sl :: H) K,
□ κ :: KJ Sl′ :: K K) → by β-reduction

Plug(SJ s K [x 7→ VJ v K, k 7→ VJ capl′ (Sl :: H) K],
□ κ :: KJ Sl′ :: K K) = by Lemma Subst

Plug(SJ s[x 7→ v, k 7→ capl′ (Sl :: H)] K, □ κ :: KJ Sl′ :: K K) = by Def MJ · K

MJ ⟨ s[x 7→ v, k 7→ capl′ (Sl :: H)] ∥ Sl′ :: K ⟩ K

Here we have used that k only occurs free in s, that κ occurs free in HJ H K and that
HJ H K [κ 7→ GJ Sl K] always is a value by Lemma ResumpSubst.

case rewindK

MJ ⟨ do (capl (S′ :: H′))[•](v) ∥ Sl :: K ∥ S :: H ⟩ K = by Def MJ · K

Plug(WJ • K(λk. HJ H′ K [κ 7→ GJ S′ K] VJ v K k),

□ HJ S :: H K :: KJ Sl :: K K) = by Def KJ · K

Plug(WJ • K(λk. HJ H′ K [κ 7→ GJ S′ K] VJ v K k),

□ κ :: let κ = HJ S :: H K in □ :: FJ Sl K :: KJ K K) = by Defs KJ · K, FJ · K

Plug(WJ • K(λk. HJ H′ K [κ 7→ GJ S′ K] VJ v K k),

□ κ :: KJ (resume(S :: H) □ :: Sl) :: K K) = by Def HJ · K

Plug(WJ • K(λk. HJ H′ K [κ 7→ GJ S′ K] VJ v K k),

□ HJ • K :: KJ (resume(S :: H) □ :: Sl) :: K K) = by Def MJ · K

MJ ⟨ do (capl (S′ :: H′))[•](v) ∥
(resume(S :: H) □ :: Sl) :: K ∥ • ⟩ K

case handleK

TR 2023

54

MJ ⟨ do (capl (S :: H))[•](v) ∥ Sl :: K ∥ • ⟩ K = by Def MJ · K

Plug(WJ • K(λk. HJ H K [κ 7→ GJ S K] VJ v K k), □ HJ • K :: KJ Sl :: K K) = by Def HJ · K

Plug(WJ • K(λk. HJ H K [κ 7→ GJ S K] VJ v K k), □ κ :: KJ Sl :: K K) = by Def WJ · K

Plug(λk. HJ H K [κ 7→ GJ S K] VJ v K k, □ κ :: KJ Sl :: K K) = by Def Plug

Plug((λk. HJ H K [κ 7→ GJ S K] VJ v K k) κ, KJ Sl :: K K) → by β-reduction

Plug(HJ H K [κ 7→ GJ S K] VJ v K κ, KJ Sl :: K K) = by Def Plug

Plug(HJ H K [κ 7→ GJ S K] VJ v K, □ κ :: KJ Sl :: K K) = by Lemma Resume

MJ ⟨ resume(S :: H)(v) ∥ Sl :: K ⟩ K

Here we have used that k is fresh.

case rewind

MJ ⟨ resume(S :: S′ :: H)(v) ∥ K ⟩ K = by Lemma Resume

Plug(HJ S′ :: H K [κ 7→ GJ S K] VJ v K, □ κ :: KJ K K) = by Def Plug

Plug(HJ S′ :: H K VJ v K,
let κ = GJ S K in □ :: □ κ :: KJ K K) = by Lemma PlugSeg

Plug(HJ S′ :: H K VJ v K, FJ S K :: KJ K K) = by Def KJ · K

Plug(HJ S′ :: H K VJ v K, KJ S :: K K) = by Def HJ · K

Plug((λx0. HJ H K [κ 7→ GJ S′ K] x0 κ) VJ v K, KJ S :: K K) → by β-reduction

Plug(HJ H K [κ 7→ GJ S′ K] VJ v K κ, KJ S :: K K) = by Def Plug

Plug(HJ H K [κ 7→ GJ S′ K] VJ v K, □ κ :: KJ S :: K K) = by Lemma Resume

MJ ⟨ resume(S′ :: H)(v) ∥ S :: K ⟩ K

Here have we used that x0 is fresh and that κ occurs free in HJ S′ :: H K.

case resume-1

55

MJ ⟨ resume((val x = □; s :: S) :: •)(v) ∥ K ⟩ K = by Lemma Resume

Plug(HJ • K [κ 7→ GJ val x = □; s :: S K] VJ v K,
□ κ :: KJ K K) = by Def HJ · K

Plug(GJ val x = □; s :: S K VJ v K, □ κ :: KJ K K) = by Def GJ · K

Plug((λx. SJ s K GJ S K) VJ v K, □ κ :: KJ K K) = by Def Plug

Plug((λx. SJ s K κ) VJ v K, let κ = GJ S K in □ :: □ κ :: KJ K K) = by Lemma PlugSeg

Plug((λx. SJ s K κ) VJ v K, FJ S K :: KJ K K) = by Def KJ · K

Plug((λx. SJ s K κ) VJ v K, KJ S :: K K) → by β-reduction

Plug(SJ s K [x 7→ VJ v K] κ, KJ S :: K K) = by Def Plug

Plug(SJ s K [x 7→ VJ v K], □ κ :: KJ S :: K K) = by Lemma Subst

Plug(SJ s [x 7→ v] K, □ κ :: KJ S :: K K) = by Def MJ · K

MJ ⟨ s [x 7→ v] ∥ S :: K ⟩ K

Here we have used that x occurs free only in s.

case resume-2
MJ ⟨ resume((resume(S′ :: H) □ :: S) :: •)(v) ∥ K ⟩ K = by Lemma Resume

Plug(HJ • K [κ 7→ GJ resume(S′ :: H) □ :: S K] VJ v K,
□ κ :: KJ K K) = by Def HJ · K

Plug(GJ resume(S′ :: H) □ :: S K VJ v K, □ κ :: KJ K K) = by Def GJ · K

Plug(HJ S′ :: H K [κ 7→ GJ S K] VJ v K, □ κ :: KJ K K) = by Def Plug

Plug(HJ S′ :: H K VJ v K, let κ = GJ S K in □ :: □ κ, KJ K K) = by Lemma PlugSeg

Plug(HJ S′ :: H K VJ v K, FJ S K :: KJ K K) = by Def KJ · K

Plug(HJ S′ :: H K VJ v K, KJ S :: K K) = by Def HJ · K

Plug((λx0. HJ H K [κ 7→ GJ S′ K] x0 κ) VJ v K, KJ S :: K K) → by β-reduction

Plug(HJ H K [κ 7→ GJ S′ K] VJ v K κ, KJ S :: K K) = by Def Plug

Plug(HJ H K [κ 7→ GJ S′ K] VJ v K, □ κ :: KJ S :: K K) = by Lemma Resume

MJ ⟨ resume(S′ :: H)(v) ∥ S :: K ⟩ K

Here we have used that x0 is fresh that κ occurs free in HJ S′ :: H K.

TR 2023

56

case resume-3
MJ ⟨ resume(#l :: •)(v) ∥ K ⟩ K = by Lemma Resume

Plug(HJ • K [κ 7→ GJ #l K] VJ v K, □ κ :: KJ K K) = by Def HJ · K

Plug(GJ #l K VJ v K, □ κ :: KJ K K) = by Def GJ · K

Plug((λx. λk. k x) VJ v K, □ κ :: KJ K K) → by β-reduction

Plug(λk. k VJ v K, □ κ :: KJ K K) = by Def MJ · K

MJ ⟨ return v ∥ K ⟩ K

◀

B.3.2 Typability Preservation
Finally, we briefly consider which changes are necessary in the proof of typability preservation
for the CPS translation (Theorem 3).

▶ Theorem 18 (Typability Preservation for the CPS Translation).
If Γ ρ ⊢ s : τ , then T J Γ K ⊢ SJ s K : Cps T J ρ K T J τ K.
If Γ ⊢ v : τ , then T J Γ K ⊢ VJ v K : T J τ K.

Proof. The typability preservation for the CPS translation from Λcap to System F is almost
the same as before. The only changes are that continuations are typed as Cap ρ τ1 τ2
instead of τ1 →ρ τ2 and the translation performs an η-extension. But an η-extension does
not change the type and the two above types are translated to the same type in System F.
Hence, the original proof carries over almost unchanged. ◀

	1 Introduction
	2 Main Ideas
	2.1 Basic Example
	2.2 Higher-Order Functions
	2.3 Summary

	3 Technical Development
	3.1 Syntax and Type Systems
	3.1.1 Source Calculus System
	3.1.2 Target Calculus cap

	3.2 Operational Semantics
	3.3 CPS Translation to SystemF
	3.4 Lift-Inference Translation
	3.4.1 Example

	3.5 Properties of Lift Inference

	4 Evaluation
	4.1 Implementation
	4.1.1 Lift Inference
	4.1.2 SML Backend in CPS

	4.2 Benchmarks
	4.2.1 Systems
	4.2.2 Results

	5 Related Work
	5.1 Efficient Compilation of Effect Handlers
	5.2 Languages with Second-Class Values
	5.3 Languages with Regions and Subregioning
	5.4 Dictionary Passing and Monad Polymorphism in Haskell

	6 Conclusion
	7 Data-Availability Statement
	A Proofs for Lift-Inference Translation from System to cap
	A.1 Typability Preservation
	A.2 Semantics Preservation

	B CPS Translation from cap to SystemF
	B.1 Operational Semantics of cap
	B.2 CPS Translation
	B.3 Proofs for the CPS Translation
	B.3.1 Semantics Preservation
	B.3.2 Typability Preservation

